Log-rank-type nonparametric test for comparing survival functions with doubly interval-censored data

Jinheum Kim1 Chung Mo Nam2

1Department of Applied Statistics
University of Suwon

2Department of Preventive Medicine and Public Health
Yonsei University College of Medicine

July 15, 2008
Doubly interval-censored data & goal

Data:
- X_i, S_i: Times of the occurrences of two related events with $X_i \leq S_i$
 - In case of AIDS cohort study, X_i: HIV infection time & S_i: diagnosis time of AIDS
- $T_i = S_i - X_i$: Survival time of interest
 - In case of AIDS cohort study, T_i: AIDS incubation time
- But, X_i and S_i are known only to lie in $[L_i, R_i]$ and $[U_i, V_i]$, respectively

Goal:
- Let $S_q(t) = Pr(T > t), q = 1, \ldots, p$, denote the survival function of T for the qth treatment group
- To test
 $H_0 : S_1(t) = \cdots = S_p(t), \forall t \in (0, \infty) \text{ vs. } H_a : \text{Not all survival functions are equal at } t$
Nonparametric test procedures for comparing survival functions

- Interval-censored data: Rank-based
 - Sun(1996, StatMed)
 - Pan(2000, StatMed)
 - Zhao & Sun(2004, StatMed)
 - Kim, Kang, & Nam(2006, CSDA)

- Doubly interval-censored data
 - Sun(2001, LIDA)
 - Focus on discrete failure time data
 - It has a problem that it does not reduce to the usual log-rank test for the right-censored data
 - Sun(2006 in the textbook “The Statistical Analysis of Interval-censored Failure Time Data”)
 - Modify Sun(2001)’s test
 - A generalization of Zhao & Sun(2004)’s test
Notations

- \(u_1 < u_2 < \cdots < u_r \): Unique ordered elements of \(\{L_i, R_i, i = 1, \ldots, n\} \)
- \(\nu_1 < \nu_2 < \cdots < \nu_s < \nu_{s+1} = \infty \): Unique ordered elements of \(\{U_i - R_i, V_i - L_i, i = 1, \ldots, n\} \)
- For \(i = 1, \ldots, n; \; k = 1, \ldots, s \), define
 \[
 \alpha_{ik} = \begin{cases}
 \sum_{j=1}^{r} I(u_j + \nu_k \in [U_i, V_i], u_j \in [L_i, R_i]), & \text{if } \nu_k \in [U_i - R_i, V_i - L_i] \\
 0, & \text{o.w}
 \end{cases}
 \]
- Define \(\delta_i \) as 1, if \(T_i \) is interval-censored or exactly observed; 0, o.w
- \(R_k \): Pseudo risk set of all subjects who have a nonzero probability of being at risk up to \(\nu_k \)
- \(D_k \): Pseudo death set of all subjects who have a nonzero probability of failing at \(\nu_k \)
Proposed test

Model assumption

- Under H_0, each admissible value of (X_i, T_i) for subject i is uniformly distributed over a set $A_i = \{(u_j, v_k); u_j + v_k \in [U_i, V_i], u_j \in [L_i, R_i], v_k \in [U_i - R_i, V_i - L_i]\}$ with equal probability of $1/\alpha_{i+}$, where $\alpha_{i+} = \sum_{k=1}^{s} \alpha_{ik}$

- In other words, if $(u_j, v_k) \in A_i$,

$$Pr\{(X_i = u_j, T_i = v_k)|(L_i, R_i, U_i, V_i)\} = 1/\alpha_{i+}, \quad (1)$$

and 0, o.w
Weights

- Under model (1), conditional probability of subject \(i\) being at risk up to \(v_k\) is given by

\[
W_{ik}^r = \Pr\{ T_i \geq v_k | (L_i, R_i, U_i, V_i) \} = \frac{\sum_{m=k}^{s} \alpha_{im}}{\sum_{n=1}^{s} \alpha_{in}} \quad (2)
\]

- Conditional probability of subject \(i\) failing at \(v_k\) is given by

\[
W_{ik}^d = \Pr\{ T_i = v_k | (L_i, R_i, U_i, V_i) \} = \frac{\delta_i \alpha_{ik}}{\sum_{n=1}^{s} \alpha_{in}} \quad (3)
\]
Proposed test

Pseudo risk set & pseudo death set

From (2) & (3), \(n_k = \sum_{i=1}^{n} w_{ik}^r \) : Pseudo-count of \(R_k \) at \(v_k \)

\(d_k = \sum_{i=1}^{n} w_{ik}^d \) : Pseudo-count of \(D_k \) at \(v_k \)

\(n_{kq} = \sum_{i}^{q} w_{ik}^r \) : Pseudo-count of \(R_k \) at \(v_k \) from treatment group \(q \)

\(d_{kq} = \sum_{i}^{q} w_{ik}^d \) : Pseudo-count of \(D_k \) at \(v_k \) from treatment group \(q \),

where \(\sum_{i}^{q} \) denotes the summation over all subjects from treatment group \(q \)

Remark:

For right-censored data, \(n_k, d_k, n_{kq}, \) and \(d_{kq} \) reduce to corresponding values in the usual log-rank test
Test statistic

- As in Sun (2001, LIDA), plug in n_k, d_k, n_{kq}, and d_{kq} into the usual log-rank test
- Define the log-rank-type statistic

$$U = (U_1, \ldots, U_{p-1})',$$

where $U_q = \sum_{k=1}^{s} (d_{kq} - d_k n_{kq}/n_k)$, $q = 1, \ldots, p - 1$

- To test H_0, propose a standardized test statistic based on U, given by

$$P = U' \hat{\Sigma}^{-1} U,$$ \hspace{1cm} (4)

where $\hat{\Sigma}$ is the estimated covariance matrix of U

- Use $P \sim \chi^2(p - 1)$ approximately under H_0
Covariance matrix estimation: Multiple imputation method

- **Step 1**: Generate $X_i^{(b)}$ from

 $$
 \Pr(X_i^{(b)} = u_j | X_i \in [L_i, R_i]) = 1/\sum_{j=1}^{r} I(u_j \in [L_i, R_i])
 $$

 over u_j's that belongs to $[L_i, R_i]$.

- **Step 2**: Given $X_i^{(b)}$'s, if S_i is right-censored, $T_i^{(b)} = U_i - X_i^{(b)}$ and $\delta_i^{(b)} = 0$. If S_i is interval-censored or exactly observed, generate $T_i^{(b)}$ from

 $$
 \Pr(T_i^{(b)} = v_k^{(b)} | T_i \in [U_i - X_i^{(b)}, V_i - X_i^{(b)}]) = 1/\sum_{r=1}^{s} I(v_r^{(b)} \in [U_i - X_i^{(b)}, V_i - X_i^{(b)}])
 $$

 over $v_k^{(b)}$'s that belongs to $[U_i - X_i^{(b)}, V_i - X_i^{(b)}]$, and $\delta_i^{(b)} = 1$
Covariance matrix estimation: Multiple imputation method

- Step 3: Based on the bth imputed right-censored data $\{(T_i^{(b)}, \delta_i^{(b)})\}$, compute the usual log-rank statistic and its covariance matrix, $U^{(b)}$ and $\hat{\Sigma}^{(b)}$, say.

- Step 4: Repeat Steps 1 to 3 $B (> 0)$ times and obtain B pairs of $(U^{(b)}, \hat{\Sigma}^{(b)}_{na})$, $b = 1, \ldots, B$

- Step 5: Compute the sum of the average of within-imputation covariance matrices and the between-imputation covariance matrix of U, say $\hat{\Sigma}^*$

Remark:
- Replacing $\hat{\Sigma}$ in (4) by $\hat{\Sigma}^*$, test H_0 based on

$$P^* = U' \hat{\Sigma}^{-1} U$$

- P^* reduces to the usual log-rank test for the right-censored data
Design parameters

- Observed intervals for X_i’s by letting L_i and R_i to be a random number from $U[0, 4]$ minus and plus a random number from $U\{0, 1, \ldots, D\}$
 - $D = 1, 2, 3$
- Survival times T_i’s are generated from the exponential distributions with hazards e^{α} and $e^{\alpha + \beta}$ for subjects from treatment groups 1 and 2, respectively
 - Observed intervals of S_i’s by letting U_i and V_i to be $X_i + T_i$’s minus and plus a random number from $U\{0, 1, \ldots, D\}$
 - S_i is right-censored if $U_i \geq 15$
 - α was used to determine the percentage of right-censored observations for the S_i
 - β represents the survival difference between the two treatment groups
 - $\beta = 0$ for the significance level of the tests
 - $\beta = -0.8, -0.4, 0.4$ or 0.8 for the powers of the tests
Design parameters

- In order to apply Sun’s test to data generated above, discretize L_i, R_i, U_i, and V_i as $L_i^d = \lceil L_i \rceil$, $R_i^d = \lceil R_i \rceil$, $U_i^d = \lceil U_i \rceil$, and $V_i^d = \lceil V_i \rceil$, respectively, where $\lceil a \rceil$ denotes the smallest value of integers greater than or equal to a

- Sample size: $n=200$ (100 subjects from each treatment group)

- Replications: 2,000

- $B = 25$
Results: Size & power

<table>
<thead>
<tr>
<th>β</th>
<th>D</th>
<th>c_f</th>
<th>P^*</th>
<th>P^{*d}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>P^*</td>
<td>1.00</td>
<td>.999</td>
<td>.996</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>P^{*d}</td>
<td>1.00</td>
<td>.999</td>
<td>.995</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>S</td>
<td>1.00</td>
<td>.999</td>
<td>.996</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>P^*</td>
<td>.780</td>
<td>.673</td>
<td>.561</td>
<td>.759</td>
<td>.685</td>
</tr>
<tr>
<td>P^{*d}</td>
<td>.760</td>
<td>.657</td>
<td>.561</td>
<td>.734</td>
<td>.673</td>
</tr>
<tr>
<td>S</td>
<td>.754</td>
<td>.662</td>
<td>.551</td>
<td>.715</td>
<td>.654</td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>P^*</td>
<td>.051</td>
<td>.053</td>
<td>.045</td>
<td>.044</td>
<td>.051</td>
</tr>
<tr>
<td>P^{*d}</td>
<td>.045</td>
<td>.051</td>
<td>.044</td>
<td>.039</td>
<td>.048</td>
</tr>
<tr>
<td>S</td>
<td>.043</td>
<td>.051</td>
<td>.043</td>
<td>.039</td>
<td>.046</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>P^*</td>
<td>.745</td>
<td>.623</td>
<td>.466</td>
<td>.742</td>
<td>.597</td>
</tr>
<tr>
<td>P^{*d}</td>
<td>.725</td>
<td>.608</td>
<td>.459</td>
<td>.726</td>
<td>.584</td>
</tr>
<tr>
<td>S</td>
<td>.730</td>
<td>.610</td>
<td>.455</td>
<td>.708</td>
<td>.572</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>P^*</td>
<td>.999</td>
<td>.992</td>
<td>.946</td>
<td>.999</td>
<td>.990</td>
</tr>
<tr>
<td>P^{*d}</td>
<td>.999</td>
<td>.990</td>
<td>.941</td>
<td>.999</td>
<td>.991</td>
</tr>
<tr>
<td>S</td>
<td>.999</td>
<td>.989</td>
<td>.942</td>
<td>.999</td>
<td>.990</td>
</tr>
</tbody>
</table>

c_f: Right censoring fraction, P^*: Proposed test, P^{*d}: Proposed test (discrete version), S: Sun(2001)'s test
AIDS cohort study

- Data taken from Kim, De Gruttola, & Lagakos (1993, BCS)
- 188 patients were infected with HIV during the study period that lasted from 1978 to 1988
- Subjects were classified into two groups according to the amount of blood factor that they received (heavily treated (HT) group vs. lightly treated (LT) group)
- Right censoring fraction in AIDS diagnosis time: 84.8% (LT group), 71.9% (HT group)
- Estimate the survival functions of HIV infection time and AIDS incubation time (i.e. time from HIV infection to AIDS diagnosis)
- Compare the survival functions of the AIDS incubation times in two treatment groups
 - \(B (\# \text{ of multiple imputation}) = 200 \)
 - \(P^* = 3.2904 (P\text{-value}=0.0697), S = 3.1150 (P\text{-value}=0.0775) \)
 - Slightly significant!
Two plots

Estimates of the survival functions of HIV infection time

- ML estimate for LT group
- ML estimate for HT group

Estimates of the survival functions of AIDS incubation time

- ML estimate for LT group
- ML estimate for HT group

Survival Function vs. Time by Months

J. Kim (Univ Suwon)
Summary

- A generalization of usual log-rank test with doubly interval-censored data
- Intuitive model & simple implementation
- Not require joint MLEs as in Sun(2001)'s test
- Unlike Sun’s test, applicable to discrete failure time data as well as continuous failure time data
- Proposed test controls well the significance level of the tests & is more powerful than Sun’s test
Thank You!