Analytical Chemistry ¥° ('95 1st term, 2nd Exam. 95.5.11)

1. What volume of 0.0634M K3Fe(CN)6 solution contains 232.4mg of K+ ? (10 points)
   K:39.0983,  Fe:55.847,  C:12.011,  N:14.00674

2. Exactly 50.00mL of a solution of HClO4 was added to a solution containing 0.5276g of primary-standard grade Na2CO3. The solution was boiled to remove CO2, and the excess HClO4 was back-titrated with 9.54mL of a NaOH solution. In a separate experiment, 30.00mL of NaOH neutralized 32.63mL of HClO4. Calculate the molarity of HClO4 and that of the NaOH. (15 points)
Na:22.98977,  C:12.011,  O:15.9994

3. List the following compounds in order of increasing molar solubility in water.
   Al(OH)
3,  Hg2Br2,  FeS,  Ce(IO3)4                               (10 points)
   For Al(OH)
3,  Ksp = 2.0 x 10-32      For Hg2Br2,   Ksp = 5.8 x 10-23
   For FeS,      K
sp = 6.0 x 10-18      For Ce(IO3)4, Ksp = 4.7 x 10-17

4. Calculate the Hg2+ and SCN- concentration in a solution prepared by mixing 20.0mL of
   0.0300M Hg
2+ with 30.0mL of 0.0500M SCN-. (10 points)
   The equation of this complex-formation is
            Hg
2+  +  2SCN-  =  Hg(SCN)2      ¥â2 = 2.0 x 1017

5. Use activities to calculate the solubility of Ce(OH)3 in the solution that results upon mixing 40.0mL of 0.0200M CeCl3 with 60.00mL of 0.0200M Ba(OH)2. (15 points)
   For Ce(OH)
3, Ksp = 2.0 x 10-20,   ¥á(Ce3+) = 9.0¡Ê,  ¥á(OH-) = 3.5¡Ê

6. What is the molar solubility of calcium carbonate, CaCO3, in water ? (15 points)
   For CaCO
3, Ksp = 4.8 x 10-9,  For H2CO3, K1 = 4.45 x 10-7,  K2 = 4.7 x 10-11

7. Using 1.0 x 10-6M as criterion for quantitative removal, determine whether it is feasible to use IO3- to separate In3+ and Tl+ in a solution that is initially 0.12M in In3+ and 0.065M in Tl+. (10 points)
   For In(IO
3)3, Ksp = 3.3 x 10-11,     For TlIO3, Ksp = 3.1 x 10-6

8. Find that undissociated silver chloride in aqueous solution, AgCl(aq), is about 80% of the total dissolved silver at 0.0030M KCl solution. (15 points)
   For AgCl, K
sp = 1.82 x 10-10            For AgCl(aq), Kd = 3.9 x 10-4
   For AgCl
2-,  Kf2 = 2.0 x 10-5           For AgCl32-,  Kf3 = 1.0

 

 

Analytical Chemistry ¥° ('95 1st term, 1st Exam. 95.3.30)

1. Describe each of the steps in a typical quantitative analysis. (10 points)

2. What are the sources of determinate error ?  And explain these sources. (8 points)

3. Calculate the result and estimate its absolute standard deviation for the following calculation. (7 points)
       y = [74(¡¾3) - 36(¡¾1)]/[123(¡¾2) + 65(¡¾4)] = ? (¡¾?)

4. Two sets of data were obtained by replicate measurements.
     set A :  43.23, 42.76, 43.54, 40.78, 42.94, 43.41, 42.62
     set B :  41.52, 40.98, 41.33, 42.67, 41.98, 42.36, 40.56
  (1) For set A, calculate the (a) mean,(2 points) (b) median,(2 points) (c) spread,(2points) (d) standard deviation,(3 points) (e) coefficient of variation(2 points).
  (2) Calculate the 95% confidence interval for data of set A and explain the meaning having this value. (7 points)
  (3) The fourth value in data of set A is likely to be anomalous. Should it be retained or rejected ?  Determine by using (a) T
n test( 95% confidence level) (5 points), and (b) Q test ( 90% confidence level ) (5 points)
  (4) Calculate the pooled standard deviation for data of set A and set B. (5 points)
  (5) Is it different the mean of set A from that of set B at 95% confidence level ? (7 points)

           Table.1 Value of t for various levels of probability

Degrees of Freedom

Factor for Confidence Interval

80%

90%

95%

99%

99.9%

1

3.08

6.31

12.7

63.7

637

2

1.89

2.92

4.30

9.92

31.6

3

1.64

2.35

3.18

5.84

12.9

4

1.53

2.13

2.78

4.60

8.60

5

1.48

2.02

2.57

4.03

6.86

6

1.44

1.94

2.45

3.71

5.96

7

1.42

1.90

2.36

3.50

5.40

8

1.40

1.86

2.31

3.36

5.04

9

1.38

1.83

2.26

3.25

4.78

10

1.37

1.81

2.23

3.17

4.59

11

1.36

1.80

2.20

3.11

4.44

12

1.36

1.78

2.18

3.06

4.32

13

1.35

1.77

2.16

3.01

4.22

14

1.34

1.76

2.14

2.98

4.14

¡Ä

1.29

1.64

1.96

2.58

3.29

  

            Table.2 Critical Values for Rejection Quotient Q

Number of Observations

 Qcrit ( Reject if Qexp > Qcrit )

90% Confidence

95% Confidence

99% Confidence

3

0.941

0.970

0.994

4

0.765

0.829

0.926

5

0.642

0.710

0.821

6

0.560

0.625

0.740

7

0.507

0.568

0.680

8

0.468

0.526

0.634

9

0.437

0.493

0.598

10

0.412

0.466

0.568

 

            Table.3 Critical Values for Rejection Quotient Tn

Number of Observations

Tn

95% Confidence

97.5% Confidence

99% Confidence

3

1.15

1.15

1.15

4

1.46

1.48

1.49

5

1.67

1.71

1.75

6

1.82

1.89

1.94

7

1.94

2.02

2.10

8

2.03

2.13

2.22

9

2.11

2.21

2.52

10

2.18

2.29

2.41

 

5. 1.3256g sulfate compound sample was dried and found to contain 6.50% water. The sample yields 1.0362g of barium sulfate. Calculate the percentage of sulfur in dry sample.(Ba:137.34, S:32.064, O:15.9994, H:1.008) (7 points)

6. A mixture containing only FeCl3 and AlCl3 weighs 5.95g. The chlorides are converted to the hydrous oxides and ignited to Fe2O3 and Al2O3. The oxide mixture weighs 2.62g. Calculate the percent Fe and Al in the original mixture. (Fe:55.847, Al:26.9815, Cl:35.453, O:15.9994) (10 points)

7. A following calibration curve data for the colorimetric determination of phosphorus in urine is prepared by reacting standard solution of phosphate with molybdenum(¥µ) and reducing the phosphomolybdic acid complex to produce the characteristic blue color.
      ppm, P     1.00     2.00     3.00     4.00      urine sample
         A       0.205    0.410    0.615    0.820        0.625
  (a) Determine the linear equation by using the method of least square, and calculate the uncertainties in slope and intercept of this line. (12 points)
  (b) Calculate the phosphorus concentration and its uncertainty in urine sample.
      Absorbance 0.625 is the mean of five measurements. (6 points)

 ¨ç Sxx = ¥Ò(xi - x)2 =  ¥Òxi2 - (¥Òxi)2/N            ¨è   Syy = ¥Ò (yi - y)2 = ¥Ò yi2 - ( ¥Òyi)2/N
 ¨é S
xy =  ¥Ò(xi - x)(yi - y) = ¥Ò xiyi - ¥Ò xi¥Òyi/N       ¨ê   x  =  ¥Ò xi/N      ¨ë   y  =  ¥Ò yi/N
 ¨ì slope    m = S
xy/Sxx      ¨í  intercept   b = y - mx     ¨î sy = [(Syy - m2Sxx)/(N-2)]1/2  ¨ï sm  = sy/(Sxx)1/2      ¨ð  sb = sy[1/{N-{(¥Òxi)2/¥Òxi2}}]1/2
 ¨ñ s
c = (sy/m)[(1/M) + (1/N) + {(yc - y)2/m2Sxx}]1/2

  

 

Analytical Chemistry ¥° ('94  1st term, 4th Exam. 94.6.21)

1. For a triprotic system , derive the following equation. (12 points)
   ¥á
2 = [HA2-]/F = {[H+]K1K2}/{[H+]3 +[H+]2K1 + [H+]K1K2 + K1K2K3}
2. Describe the following terms. (12 points)
   (a) chelate effect, (b) displacement titration  (c) Jones reductor

3. Find the pH of 0.01M ammonium bicarbonate. (10 points)
   pK
b(NH3) = 4.745,  for H2CO3, pK1 = 6.352, pK2 = 10.329

4. Expect the potential range over which the redox indicator color will change, when a saturated calomel electrode is used as the reference electrode. (12 points)

5. A 1.000mL sample of unknown containing Co2+ and Ni2+ was treated with 25.00mL of 0.03872M EDTA. Back titration with 0.02127M Zn2+ at pH 5 required 23.54mL to reach the xylenol orange end point. A 2.000mL sample unknown was passed through an ion exchange column that retards Co2+ more than Ni2+. The Ni2+ that passed through the column was treated with 25.00mL of 0.03872M EDTA and required 25.63mL of 0.02127M Zn2+ for back  titration. The Co2+ emerged from the column later. It, too, was treated with 25.00mL of 0.03872M EDTA. How many milliliters of 0.02127M Zn2+ will be required for back titration. (10 points)      

6. A 50.0mL solution containing Ni2+ and Zn2+ was treated with 25.0mL of 0.0383M EDTA to bind all the metal. The excess unreacted EDTA required 10.4mL of 0.0112M Mg2+ for  complete reaction. An excess reagent 2,3-dimercapto-1-propanol was then added to displace the EDTA from zinc. Another 28.3mL of Mg2+ was required for reaction with the  liberated EDTA. Calculate the molarity of Ni2+ and Zn2+ in the original solution. (10 points)

7. Sulfide ion was determined by indirect titration with EDTA. To a solution containing 25.00mL of 0.04312M Cu(ClO4)2 plus 15mL of 1M acetate buffer (pH 4.5) was added 25.00mL of unknown sulfide solution with vigorous stirring. The CuS precipitate was filtered and washed with hot water. Then ammonia was added to the filtrate (which contains excess Cu2+) until the blue color of Cu(NH3)42+ was observed. Titration with 0.03835M EDTA required 12.05mL to reach the murexide end point. Calculate the molarity of sulfide in the unknown. (10 points)    

8. Calculate the potential (versus S.C.E. anode) at each point listed for the titration of 25.00mL of 0.0200M Cr2+ with 0.0100M Fe3+ : (a) 5.00mL, (b) 25.00mL, (c) 50.00mL, (d) 100.00mL. Esce = 0.241V, E¡Æ(Cr3+/Cr2+) = - 0.42V, E¡Æ(Fe3+/Fe2+) = 0.771V (12 points)

9. Nitrite(NO2-) can be determined by oxidation with excess Ce4+, followed by back titration of the unreacted Ce4+. A 5.166g sample of solid contaning only NaNO2 and NaNO3 was dissolved in 500.0mL. A 25.00mL sample of this solution was treated with 50.00mL of 0.1188M Ce4+ was back-titrated with 30.12mL of 0.04132M ferrous ammonium sulfate. Na:22.9898  N:14.0067  O:15.9994

2Ce4++ NO2- + H2O ¡æ 2Ce3++ NO3- + 2H+       Ce4++ Fe2+ ¡æ Ce3++ Fe3+

Calculate the weight percent of NaNO2 in the solid. (12 points)

 

 

Analytical Chemistry ¥° ('94  1st term, 3rd Exam. 94.6.2)

   Na:22.990   Cl:35.453    Br:79.904    K:39.098   O:15.999    H:1.008      C:12.011

1. Describe the following terms. ( 12 points )
   (a) Blank titration
   (b) Standardization
   (c) Back titration

2. Explain the Volhard titration, one of three argentometric titrations. (8 points)

3. 0.2458g sample which contained only NaCl and KBr was dissolved in water. When this  sample was titrated with 0.05027M , it was required 46.78mL for complete titration of both halides. Calculate the weight percent of Cl in the solid sample. (12 points)

4. Find that the pH of amphiprotic compound HL is (pK1 + pK2)/2. (10 points)

5. Calculate how many milliliters of 0.100M HCl should be added to how many grams of sodium acetate dihydrate (CH3COONa 2H2O) at 5¡É to prepare 250.0mL of 0.100M  buffer, pH 5.00.  At 5¡É, pKa for acetic acid is 4.770. (10 points)

6. Explain the preparation of a buffer in real experiments. (13 points)

7. Describe the Gran plot. (10 points)

8. Consider the titration of 50.0mL of 0.0500M malonic acid (, Ka1 = 1.40 x 10-3, Ka2 = 2.01 x 10-6 ) with 0.100M NaOH. Calculate the pH at each point listed.  
   V
b = 0.0, 7.0, 12.5, 18.3, 25.0, 31.7, 37.5, 43.8, 50.0 and 56.3mL. (20 points)

9. The base B is too weak to titrate in aqueous solution. Which solvent, pyridine or acetic acid, would be more suitable for titration of B with HCl ? Why ? (5 points)

 

 

Analytical Chemistry ¥° ('94  1st term, 2nd Exam. 94.5.2)

1. Explain the following terms
   (1) disproportionation (5 points)
   (2) common ion effect (5 points)
   (3) peptization (5 points)

2. If AgCl(Ksp = 1.8 x 10-10), AgBr(Ksp = 5.0 x 10-13), AgI(Ksp = 8.3 x 10-17), and  Ag2CrO4(Ksp = 1.1 x 10-11) precipitate are in aqueous solution, what order will the solubility (in molarity) be increased ? (10 points)  

3. Explain the principle that HCl foundation is made. (10 points)

4. Is the solubility of a salt in aqueous solution increased or decreased by the addition of ions ?   Why ? (10 points)

5. Find the concentration of Ba2+ in a 0.0333M Mg(IO3)2 solution saturated with
   Ba(IO
3)2 (Ksp = 1.57 x 10-9).    (Ba2+) = 500pm,  (IO3-) = 450pm   (12 points)

6. Calculate the molarity of Ag+ in a saturated aqueous solution of Ag3PO4 at pH 5.0.
   K
sp(Ag3PO4) = 2.8 x 10-18, for H3PO4,  Ka1 = 7.1 x 10-3    Ka2 = 6.3 x 10-8  
   K
a3 = 7.1 x 10-13 (13 points)

7. State the way how larger particle is produced. (12 points)

8. Why is it less desirable to wash AgCl precipitate with aqueous NaNO3 than with HNO3 solution ? (5 points)

9. Twenty dietary iron tablets with a total mass of 22.131g were ground and mixed thoroughly. Then 2.998g of the powder was dissolved in HNO3 and heated to convert all the iron to Fe3+. Addition of NH3 caused quantitative precipitation of Fe(OH)3, which was ignited to give 0.246g of Fe2O3. What is the average mass of FeSO4 7H2O in each tablet ? (13 points)  Fe = 55.847,  S = 32.066,  O = 15.999,  H = 1.008

 

 

Analytical Chemistry ¥° ('94  1st term, 1st Exam. 94.3.24)

1. A 43%(wt/wt) aqueous solution of HBr(MW= 80.912g) has a density of 1.40g/mL.
  (a) What is the formal concentration(M) of the solution? (7 points)
  (b) What is the mass of solution that contains 41.2g of HBr? (3 points)
  (c) What volume(mL) of solution contains 254mmole of HBr? (3 points)
  (d) How much this HBr solution is needed to prepare 0.250L of 0.150M HBr? (4 points)

2. Explain the principle that an electronic balance is operated. (10 points)

3. What do the symbols "TD" and "TC" mean on volumetric glassware ? (5 points)

4. Find the absolute uncertainty and percent relative uncertainty for each calculation. Express the answers with a reasonable number of significant figure.
  (a) { 42.3(¡¾ 1.0) + 90.2( ¡¾ 0.2) } ¡À  21.1(¡¾ 0.2) =     (5 points)
  (b) 0.002364( ¡¾ 0.000003) ¡À  0.02500(¡¾ 0.00005) =    (5 points)

5. Two methods were used to measure the specific activity of an enzyme.
     Method 1     143      147      156      148      145    
     Method 2     148      159      156      162      157
  (1) For method 2, calculate the (a) mean (2 points) (b) median (2 points)  (c) spread (2 points) (d) standard deviation. (3 points)
  (2) Calculate the 95% confidence interval for method 2, and explain the meaning of this confidence interval. (5 points)
  (3) The third value in method 1 is anomalous. Determine whether that value is rejected or retained by Q test( 90% confidence ) (5 points)
  (4) Calculate the pooled standard deviation, based upon data in method 1 and method 2 (5 points)
  (5) Is there significant difference between the means of method 1 and method 2 at the 95% confidence level ?  Why ? (5 points)

6. The following are relative peak area for chromatogram of standard solutions of benzene.
   Concentration of benzene(mM)   0.500   1.50   2.50    3.50     4.50    5.50      
        Relative peak area        3.76    9.16   15.03   20.42    25.33   31.97
  (1) Derive a least squares expression assuming the variables bear a linear relationship to one another. (12 points)
  (2) Plot the least-squares line as well as the experimental point. (3 points)
  (3) Calculate the standard deviation of intercept as well as the standard deviation of the slope. (5 points)
  (4) An unknown sample containing benzene yielded relative peak area of 27.50. Calculate the concentration and standard deviation of benzene in this sample. (9 points)    

            Table.1 Value of t for various levels of probability

Degrees of Freedom

Factor for Confidence Interval

80%

90%

95%

99%

99.9%

1

3.08

6.31

12.7

63.7

637

2

1.89

2.92

4.30

9.92

31.6

3

1.64

2.35

3.18

5.84

12.9

4

1.53

2.13

2.78

4.60

8.60

5

1.48

2.02

2.57

4.03

6.86

6

1.44

1.94

2.45

3.71

5.96

7

1.42

1.90

2.36

3.50

5.40

8

1.40

1.86

2.31

3.36

5.04

9

1.38

1.83

2.26

3.25

4.78

10

1.37

1.81

2.23

3.17

4.59

11

1.36

1.80

2.20

3.11

4.44

12

1.36

1.78

2.18

3.06

4.32

13

1.35

1.77

2.16

3.01

4.22

14

1.34

1.76

2.14

2.98

4.14

¡Ä

1.29

1.64

1.96

2.58

3.29

  

            Table.2 Critical Values for Rejection Quotient Q

Number of Observations

 Qcrit ( Reject if Qexp > Qcrit )

90% Confidence

95% Confidence

99% Confidence

3

0.941

0.970

0.994

4

0.765

0.829

0.926

5

0.642

0.710

0.821

6

0.560

0.625

0.740

7

0.507

0.568

0.680

8

0.468

0.526

0.634

9

0.437

0.493

0.598

10

0.412

0.466

0.568

 

                                                                 
    m = |  ¥Òx
iyi  ¥Òxi |¡À   D           D = | ¥Ò(xi2)  ¥Òxi  |
           | ¥Òy
i      n   |                         | ¥Òxi        n   |
                             
    b = | ¥Ò(x
i2)  ¥Òxiyi  | ¡À  D         ¥òy ¡Ö  sy = [¥Ò(di-d)2/(degree of freedom)]1/2
          | ¥Ò x
i      ¥Òyi    |

     ¥òm2 = ¥òy2n/D         ¥òb2 = ¥òy2¥Ò(xi2)/D
 

 

Analytical Chemistry ¥° ('93 1st term, 4th Exam. 93.6.18)

1. Explain the reasons why anhydrous acetic acid is usually chosen as a solvent for neutralization titration of very weak bases.(10 points)

2. Chromel is an alloy composed of Ni, Fe, and Cr. A 1.2825g sample was dissolved and  diluted to 500.0mL. When a 50.0mL aliquot of 0.05260M EDTA was mixed with an equal volume of the diluted sample, all three ions were  chelated, and a 6.23mL back-titration with 0.06241M Cu2+ was required. The Cr in a second 50.0mL aliquot was masked through the addition of hexamethylenediamine ; titration of the Fe and Ni required 38.32mL of 0.05260M EDTA. Fe and Cr were masked with pyrophosphate in a third 50.0mL aliquot, and Ni was titrated  with 26.32mL of 0.05260M EDTA solution. Calculate the percentage of Ni, Cr, and Fe in the alloy.(10 points) (Cr = 51.996, Fe = 55.847, Ni = 58.70)

3. The 25.00mL of 0.0200M Ni2+ solution maintained at pH 10.00 with NH3/NH4+ buffer was titrated with 0.010M Na2H2Y. Assume that the concentration of NH3 remains 0.100M throughout. Calculate values for pNi after the addition of (a) 49.00mL, (b) 50.00mL,(c) 51.00mL. (20 points) Kf(NiY2-) = 4.2 x 1018,   ¥á4 at pH = 0.35,  For nickel ammine complexes, logK1= 2.8, logK2 = 2.2, logK3 = 1.7, logK4 = 1.2, logK5 = 0.8, and logK6 = 0.0

4. Calculate potentials after 50.0mL of 0.050M U4+ solution is added with (a)10.00mL, (b)49.90mL, (c) 50.00mL, (d) 50.10mL, and (e) 60.00mL of 0.100M V(OH)4+. Assume that the pH is 1.00 throughout. (20 points)      UO22+ + 4H+ + 2e = U4+ + 2H2O  E¢ª= 0.334V, V(OH)4+ + 2H+ + e = VO2+ + 3H2O   E¢ª= 1.000V

5. Air in the vicinity of a paper mill was analyzed for its sulfur dioxide content by drawing a quantity through 50.0mL of 0.01182M Ce(SO4)2 at the rate of 3.30L/min.
   Reaction: SO
2(g) + 2Ce4+ + 2H2O ¡æ SO42- + 2Ce3+ + 4H+

Upon completion of a 50.0min. sampling period, the excess Ce4+ was titrated with 11.32mL of 0.03264M Fe2+. Does the air meet the federal standard of 2ppm (or less) SO2 ? (O = 16.000, S = 32.060)  Use 1.20 x 10-3g/mL for the density of air. (15 points)

6. Survival of trout requires water in which the oxygen concentration is greater than 5ppm. A 100.0mL sample of lake water was analyzed according to the method using the following equation,    O2(g) +4Mn(OH)2(s) +2H2O ¡æ 4Mn(OH)3(s),   2Mn(OH)3(s) +2I- +6H+¡æ 2Mn2++I2 +6H2O,    I2 + 2S2O32- ¡æ 2I- + S4O62-  with the liberated iodine requiring a 10.52mL titration with 0.01123M thiosulfate. Is the oxygen concentration sufficient to warrant the stocking of  trout in this lake. (10 points)

7. A 5.00mL portion of table wine was diluted to 100.0mL in volumetric flask. The ethanol in a 25.0mL aliquot was distilled into 100.0mL of 0.05232M K2Cr2O7. Heating completed oxidation of the alcohol to acetic acid:   CH3CH2OH + 2Cr2O72- +16H+ ¡æ 3CH3COOH + 4Cr3+ + 11H2O following which the excess dichromate was titraed with 14.42mL of 0.03215M Fe2+. Calculate the weight-volume percentage of ethanol in the wine. (10 points) ( H = 1.008, C = 12.011, O = 16.000 )

8. Why is zinc amalgam rather than pure used in a Jones reductor ? (5 points)

9. What are your plans for this summer vacation ? (10 points)

 

 

Analytical Chemistry ¥° ('93 1st term, 3rd Exam. 93.5.24)

(H = 1.008, C = 12.011, N = 14.000, O = 16.000, S = 32.060, Cl = 35.453 )

1. Explain how the buffer solution of any desired pH is prepared. (10 points)

2. Why does an indicator have a transition range which extends over approximately 2 pH units ? (10 points)

3. The action of an alkaline I2 solution upon the rodencide warfarin, C19H16O4, results in the formation of 1 mole of iodoform, CHI3, for each mole of the parent compound reacted. Analysis for warfarin can then be based upon the following reaction between CHI3 and Ag+
            CHI
3 + 3Ag+ + H2O ¡æ 3AgI(s) + 3H+ + CO(g)
A 15.24g sample was treated with 20.00mL of 0.03010M AgNO
3, and the excess Ag+ was then titrated with 2.75mL of 0.05325M KSCN. Calculate the percentage of warfarin in the sample. (10 points)

4. A 5.272g sample containing NH4Cl, (NH4)2SO4, and inert materials was diluted to exactly 500.00mL. The Cl- in a 50.00mL aliquot of this solution required 24.04mL of 0.0682M AgNO3. The NH4+ in a 25.00mL aliquot was converted to NH3 and collected in 100.00mL of a 0.03120M sodium  tetraphenylborate solution.
         NH
3(g) + NaB(C6H5)4 + H+ ¡æ NH4B(C6H5)4(s) + Na+
After the solid had been removed by filtration, titration of the filtrate and washings was required 8.30mL of 0.0682M AgNO
3 solution.
                 Ag
+ + NaB(C6H5)4 ¡æ AgB(C6H5)4 + Na+
Calculate the percentage of NH
4Cl and (NH4)2SO4 in the sample. (12 points)

5. (a) Calculate the pH of the solution that is 0.600M in glycolic acid and 0.500M in sodium glycolate. (10 points)
         HOCH
2COOH + H2O  =  HOCH2COO-  + H3O+         Ka = 1.48 x 10-4

(b) Calculate the change in pH that occurs when 0.500mmole of HCl is added to 100.0mL of buffer solution (a). (10 points)

6. Calculate  ¥á-value for species derived from phosphoric acid in a solution buffered to a pH of 3.00. (10 points)
   ( H
3PO4 : Ka1 = 7.11 x 10-3,  Ka2 = 6.34 x 10-8,  Ka3 = 4.20 x 10-13 )

7. 50.00mL of a 0.100M ethylenediamine solution is titrated with 0.200M HCl solution. Calculate the pH after the addition of (a) 0.00, (b) 10.00, (c) 25.00, (d) 40.00, (e) 50.00, (f) 52.00mL of the acid. (18 points)    ethylenediamine( NH2C2H4NH2 )   Kb1 = 8.5 x 10-5,    Kb2 = 7.1 x 10-8

8. A Kjeldahl analysis was performed upon a 0.0600g sample of impure biguanide, C2H7N5. The liberated ammonia, collected in 40.00mL of 4 % boric acid, was titrated with 20.23mL of 0.1124M HCl.  Calculate the percentage of biguanide in the sample. (10 points)

 

 

Analytical Chemistry ¥° ('93 1st term, 2nd Exam. 93.4.20)

1. Briefly describe the following terms.(20 points)
 (a) back-titration
 (b) primary standard
 (c) weight or gravimetric titrimetry
 (d) mass-action effect

2. Assume that an sample of sea water has a density of 1.030 and contains 1100 ppm Na+ and 300 ppm SO42-.  Calculate the molar concentration of the two ions.  (atomic weight  Na: 22.9898   S: 32.0600   O: 15.9994) (10 points)

3. When a solution of HClO4 was standardized against the solution of KBr dissolved 0.4385g of primary-standard grade HgO, the liberated OH- was neutralized with 42.49mL of this acid.           HgO(s) + 4Br- + H2O  ¡æ HgBr42-  +  2OH-
Calculate the molarity of the HClO
4 solution. (Hg: 200.5900,  O: 15.9994)  (10 points)

4. Write the following four compounds in order of decreasing molar solubility in water. (15 points)
   AgIO
3 (Ksp = 3.0 x 10-8),             Sr(IO3)2 (Ksp = 3.3 x 10-7),
   La(IO
3)3 (Ksp = 6.2 x 10-12),         Ce(IO3)4 (Ksp = 4.7 x 10-17)

5. Use activities to calculate the molar solubility of La(OH)3 in the solution that results when 50.0mL of 0.0300M LaCl3 is mixed with 50.0mL of 0.100M KOH.
   (K
sp for La(OH)3 = 2.0 x 10-21,   ¥á(La3+) = 9.0¡Ê,   ¥á (OH-) = 3.5¡Ê) (15 points)

6. Calculate the molar solubility of CdCO3 in water by the systematic method.
   ( K
sp(CdCO3) = 2.5 x 10-14,   Ka1 for H2CO3 = 4.45 x 10-7,
     K
a2 for H2CO3 = 4.70 x 10-11)  (20 points)

7. A solution is 0.050M in Na2SO4 and 0.050M in NaIO3. To this is added a solution containing Ba2+.  What is the concentration of anion that forms the less soluble barium salt when the more soluble precipitate begins to form ? (10 points)
   (K
sp for BaSO4 = 1.30 x 10-10,   Ksp for Ba(IO3)2 = 1.57 x 10-9)

 

 

 Analytical Chemistry ¥° ('93 1st term, 1st Exam. 93.3.23)

1. What are the considerations in selecting a method of analysis ?(5 points)

2. Explain how the determinate method errors can be detected.(12 points)

3. Consider the following sets of replicate measurements.
   A : 0.842, 0.829, 0.834, 0.826, 0.830, 0.832
   B : 0.853, 0.849, 0.852, 0.856
  (1) For A set, calculate the (a) mean(2 points) (b) median(2 points) (c) spread (2 points) (d) standard deviation(3 points), and (e) coefficient of variation (3 points).
  (2) Calculate the 95% confidence limit for A set, and explain the meaning of this confidence limit.(5 points)
  (3) The first value in A set is anomalous. Determine whether that value is rejected or retained by     (a) Q test (96% confidence level)(4 points)  and (b) T
n test (95% confidence level)(4 points).
  (4) Calculate the pooled standard deviation, based upon data in A set and B set. (5 points)
  (5) Is there significant difference between the means of A set and B set at the 95% confidence level ?   Why ? (5 points)

4. Estimate the absolute standard deviation and the coefficient of variation for the result of the following calculation and round result.(5 points)
            y = 18.32( ¡¾ 0.03) - 1.37( ¡¾ 0.03) + 0.0052( ¡¾ 0.0002)

5. The following data were obtained in calibrating a cadmium ion electrode for the determination of pCd. There is a linear relationship between potential E and pCd.

       pCd              5.00     4.00       3.00      2.00       1.00
       E(mV)       - 53.8   - 27.7     + 2.7      31.9       65.1

   (1) Derive a least-squares expression for the best straight line through the points.(8 points)
   (2) Calculate the standard deviation for the slope and the intercept of the least-squares line.(6 points)
   (3) Calculate the pCd of a waste water in which the electrode potential was 18.7mV.(5 points)
   (4) Calculate the absolute standard deviation for the result if electrode potential were the mean of six measurements.(5 points)

 ¨ç Sxx = ¥Ò(xi - x)2 =  ¥Òxi2 - (¥Òxi)2/N            ¨è   Syy = ¥Ò (yi - y)2 = ¥Ò yi2 - ( ¥Òyi)2/N
 ¨é S
xy =  ¥Ò(xi - x)(yi - y) = ¥Ò xiyi - ¥Ò xiyi/N       ¨ê   x  =  ¥Ò xi/N      ¨ë   y  =  ¥Ò yi/N
 ¨ì slope    m = S
xy/Sxx      ¨í  intercept   b = y - mx     ¨î sy = [(Syy - m2Sxx)/(N-2)]1/2       ¨ï sm  = sy/(Sxx)1/2      ¨ð  sb = sy[1/{N-{(¥Òxi)2/¥Òxi2}}]1/2
 ¨ñ s
c = (sy/m)[(1/M) + (1/N) + {(yc - y)2/m2Sxx}]1/2

6. Explain the conditions that larger particles can be obtained.(10 points)

7. A 0.6280g sample that contains NaCl, NaBr, plus impurities gives a precipitate of AgCl and AgBr that weighs 0.5064g. Another 0.6280g sample is titrated with 0.1050M AgNO3 requiring 28.34mL. Calculate the percentage of NaCl and NaBr in the sample. (9 points)
 [formula weight(g) : AgCl = 143.32, AgBr = 187.77, NaCl = 58.44, NaBr = 102.90]

           Table.1 Value of t for various levels of probability

Degrees of Freedom

Factor for Confidence Interval

80%

90%

95%

99%

99.9%

1

3.08

6.31

12.7

63.7

637

2

1.89

2.92

4.30

9.92

31.6

3

1.64

2.35

3.18

5.84

12.9

4

1.53

2.13

2.78

4.60

8.60

5

1.48

2.02

2.57

4.03

6.86

6

1.44

1.94

2.45

3.71

5.96

7

1.42

1.90

2.36

3.50

5.40

8

1.40

1.86

2.31

3.36

5.04

9

1.38

1.83

2.26

3.25

4.78

10

1.37

1.81

2.23

3.17

4.59

11

1.36

1.80

2.20

3.11

4.44

12

1.36

1.78

2.18

3.06

4.32

13

1.35

1.77

2.16

3.01

4.22

14

1.34

1.76

2.14

2.98

4.14

¡Ä

1.29

1.64

1.96

2.58

3.29

  

            Table.2 Critical Values for Rejection Quotient Q

Number of Observations

 Qcrit ( Reject if Qexp > Qcrit )

90% Confidence

95% Confidence

99% Confidence

3

0.941

0.970

0.994

4

0.765

0.829

0.926

5

0.642

0.710

0.821

6

0.560

0.625

0.740

7

0.507

0.568

0.680

8

0.468

0.526

0.634

9

0.437

0.493

0.598

10

0.412

0.466

0.568

 

            Table.3 Critical Values for Rejection Quotient Tn

Number of Observations

Tn

95% Confidence

97.5% Confidence

99% Confidence

3

1.15

1.15

1.15

4

1.46

1.48

1.49

5

1.67

1.71

1.75

6

1.82

1.89

1.94

7

1.94

2.02

2.10

8

2.03

2.13

2.22

9

2.11

2.21

2.52

10

2.18

2.29

2.41

 

 

ºÐ¼®È­ÇÐ ¥° ( 92Çг⵵ 1Çбâ 4Â÷½ÃÇè, 92.6.12 )

1. Nonaqueous neutralization titrationÀ» Çϱâ À§ÇØ amphiprotic solvent¸¦ ¼±ÅÃÇÒ ¶§ °í·ÁÇØ¾ß ÇÒ Á¡À» ethanolÀ» ÀÌ¿ëÇÏ¿© ¼³¸íÇ϶ó. (10Á¡)

2. ¿¡Åº¿ÃÀÇ autoprotolysis constant´Â 8.0 x 10-20 ÀÌ°í, ¿¡Åº¿Ã¿¡¼­ aniline(C6H5NH2)ÀÇ ¿°±âÇظ®»ó¼ö´Â 4.0 x 10-14 ÀÌ´Ù. (a) anhydrous ethanol (pH = -log[C2H5OH2+])°ú (b) ¹° ¿¡¼­ 0.01M C6H5NH3+ ¿Í 0.02M C6H5NH2¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â ¿ë¾×ÀÇ pH¸¦ °¢°¢ ±¸Ç϶ó. ¹°¿¡¼­ÀÇ Kb = 3.94 x 10-10 ÀÌ´Ù. (10Á¡)

3. Masking agent¶õ ¾î¶² ¿ªÇÒÀ» ÇÏ´Â °ÍÀΰ¡ ? ¿¹¸¦ µé¾î ¼³¸íÇ϶ó. (7Á¡)

4. Ȳ»êÀÌ¿Â(SO42-)ÀÌ µé¾îÀÖ´Â 1.515g ½Ã·á ¼Ó¿¡ ÀÏÁ¤ °ú·®ÀÇ BaY2-¿ë¾×À» ÷°¡ÇÏ°í »êÀÇ ³óµµ¸¦ Áõ°¡½ÃÅ°¹Ç·Î¼­ Ba2+°¡ Çظ®µÇ°Ô ÇÏ¿© ¸ðµç Ȳ»êÀÌ¿ÂÀ» BaSO4 ħÀüÀ¸·Î ¸¸µé¾ú´Ù. ħÀüÀ» ¿©°úÇÏ°í ¾ÄÀº ÈÄ ¿©°ú¾×°ú ¾ÄÀº ¾×À» 250mL volumetric flask¿¡ ¸ð¾Æ pH10.0 buffer solutionÀ» ÀÌ¿ëÇÏ¿© ¿ë¾×À» Ç¥¼±±îÁö ¹±Çû´Ù. ÀÌ ¿ë¾× 25.0mL¸¦ ÃëÇÏ¿© 0.01545M Mg2+¿ë¾×À¸·Î ÀûÁ¤ÇÏ¿´´õ´Ï 28.73mL°¡ ¼ÒºñµÇ¾ú´Ù. ½Ã·áÁßÀÇ Na2SO4.10H2OÀÇ ¹«°Ô ÇÔ·® %´Â ¾ó¸¶Àΰ¡ ? (10Á¡)

5. Pb, Mg, ZnÀ» Æ÷ÇÔÇÏ°í ÀÖ´Â ½Ã·á 0.4085gÀ» ³ì¿©¼­ CN-À¸·Î ó¸®ÇÏ¿© Âø¹°À» ¸¸µé¾î ZnÀ» °¡¸®¿ö ÁÖ¾ú´Ù: Zn2+ + 4CN- ¡æ Zn(CN)42-. Pb¿Í Mg¸¦ ÀûÁ¤Çϴµ¥ 0.02064M EDTA°¡ 42.22mL°¡ ¼ÒºñµÇ¾ú´Ù. ±× ´ÙÀ½ Pb¸¦ BAL(2,3-dimercaptopropanol)·Î °¡¸®¿ö ÁÖ¾î EDTA°¡ ºÐ¸®µÇ¾î ³ª¿À°Ô ÇÏ¿© 0.007657M Mg¿ë¾×À¸·Î ÀûÁ¤ÇÏ¿´´õ´Ï 19.35mL°¡ Àû°¡µÇ¾ú´Ù. ¸¶Áö¸·À¸·Î formaldehyde¸¦ ³Ö¾îÁÖ¾î ZnÀ» demaskÇÏ¿´´Ù: Zn(CN)42- + 4HCHO +4H2O ¡æ Zn2+ + 4HOCH2CN + 4OH-. ÀÌ°ÍÀ» 0.02064M EDTA·Î ÀûÁ¤ÇÏ¿´´õ´Ï 28.63mL°¡ Àû°¡µÇ¾ú´Ù. ½Ã·á ¼Ó¿¡ µé¾î ÀÖ´Â ¼¼ ±Ý¼ÓÀÇ ÇÔ·® ¹«°Ô %¸¦ ±¸Ç϶ó. (12Á¡)

6. 0.0500M U4+¿ë¾× 50.00mL¿¡ 0.0200M MnO4-¿ë¾×À» (a) 25.00mL  (b) 49.00mL (c)49.90mL
(d) 50.00mL (e) 50.10mL (f) 51.00mL¸¦ Àû°¡ÇÏ¿´À» ¶§ÀÇ Àü±ØÀüÀ§¸¦ ±¸ÇÏ°í, ÀûÁ¤°î¼±À» ±×·Á¶ó. (3Á¡ x 7)   ÀûÁ¤ÇÏ´Â µ¿¾È Ç×»ó [H
+] = 1.00 À̶ó°í ÇÏÀÚ.
   ( E¢ª(UO
22+/U4+) = + 0.334V,   E¢ª(MnO4-/Mn2+) = + 1.51V )

7. ´ÙÀ½ ¹ÝÀÀÀÇ Á¾¸»Á¡¿¡¼­ÀÇ Àü±ØÀüÀ§¸¦ ±¸Ç϶ó. (10Á¡)
   2Ce
4+ + H2SeO3 + H2O = SeO42- + 2Ce3+ + 4H+   (in 1M H2SO4)
   ( E¢ª(SeO
42-/H2SeO3) = + 1.15V,  Ef(Ce4+/Ce3+) = 1.44V )

8. Ant-control¿¡ ÀÇÇØ ¸¸µé¾îÁø ½Ã·á 8.13gÀ» H2SO4¿Í HNO3¸¦ ÀÌ¿ëÇÏ¿© ºÐÇظ¦ ÇÏ°í ÀÌ ºÐÇع°¿¡ Á¸ÀçÇÏ´Â As¸¦ hydrazineÀ» ÀÌ¿ëÇÏ¿© ¸ðµÎ +3°¡·Î ¸¸µé¾ú´Ù. °ú·®ÀÇ È¯¿øÁ¦¸¦ Á¦°ÅÇÑ µÚ As3+ÀÇ ¾çÀ» ¾Ë±â À§ÇÏ¿© ¾àÇÑ ¿°±â¼º ¿ë¾×¿¡¼­ 0.02425M I2·Î ÀûÁ¤ÇÏ¿´´õ´Ï 23.77mL°¡ µé¾î°¬´Ù. ¿ø·¡ ½Ã·á ¼Ó¿¡ µé¾îÀÖ´Â As2O3ÀÇ ÇÔ·® %´Â ¾ó¸¶Àΰ¡ ? (10Á¡)
   ( E¢ª(H
3AsO4/H3AsO3) = + 0.559V,  E¢ª(I2/I-) = + 0.615V )

9. ´Ü´ÜÈ÷ ´ÝÇôÁ® ÀÖ´Â flask¿¡¼­ 0.01194M I2 50.00mL¿Í 1.657gÀÇ ½Ã·á¸¦ Àß Èçµé¾î ¹ÝÀÀ½ÃÄÑ È¥ÇÕ¹°¿¡ µé¾î ÀÖ´Â ethyl mercaptanÀÇ ¾çÀ» ±¸ÇÏ¿´´Ù.: 2C2H5SH + I2 ¡æ 2I- + C2H5SSC2H5 + 2H+,  °ú·®ÀÇ I2 ¸¦ 0.01325M Na2S2O3·Î ¿ªÀûÁ¤ÇÏ´Ï 16.77mL °¡ Àû°¡µÇ¾ú´Ù.  C2H5SH ÀÇ ÇÔ·® % ¸¦ ±¸Ç϶ó. (10Á¡)

   ¿øÀÚ·® : H: 1.008, C:12.011, O:16.000, Na: 22.990, Mg: 24.305, S:32.060, Zn: 65.380, As: 74.922, Pb: 207.2,

 

 

ºÐ¼®È­ÇÐ ¥° ( 92Çг⵵ 1Çбâ 3Â÷½ÃÇè, 92.5.27 )

1. Buffer solutionÀÇ definition, preparation ±×¸®°í buffer capacity¿¡ ´ëÇؼ­µµ ¼³¸íÇ϶ó. (12Á¡)

2. 39.9%(w/w) ÀÌ°í, ¹Ðµµ°¡ 1.200g/mL ÀÎ HCl ¼ö¿ë¾×ÀÇ pH´Â ¾ó¸¶Àΰ¡ ? (5Á¡)

3. 0.300M sodium mandelate(C6H5CH(OH)COONa) 250mL¿¡ 0.200M HClÀ» ÷°¡ÇÏ¿© pH 3.37ÀÎ ¿ÏÃæ¿ë¾×À» ¸¸µé·Á°í ÇÑ´Ù. 0.200M HClÀÇ ÇÊ¿äÇÑ ºÎÇÇ´Â ¾ó¸¶Àΰ¡? (7Á¡)
   K
a(C6H5CH(OH)COOH) = 3.88 x 10-4

4. 0.05M H2SO4 ¿ë¾×ÀÇ ¼ö¼ÒÀÌ¿Â ³óµµ¸¦ °è»êÇ϶ó. ( Ka2 = 1.20 x 10-2 ) (5Á¡)

5. Amphiprotic substance ÀÎ NaHA ÀÇ ¼ö¼ÒÀ̿³󵵰¡ [H3O+] ¡Ö  ( Ka1 x Ka2 )1/2 ÀÓÀ» Áõ¸íÇ϶ó. (15Á¡)

6. 0.300M Na2CO3¿Í 0.200M HCl·ÎºÎÅÍ pH 9.60ÀÎ ¿ÏÃæ¿ë¾× 1.00L¸¦ ¸¸µå´Â ¹ý¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( H2CO3 ÀÇ Ka2 = 4.7 x 10-11 ) (10Á¡)

7. 0.100M NaOH¿Í 0.080M hydrazine(H2NNH2)À¸·Î µÈ ¿ë¾× 50.0mL¸¦ 0.200M HClO4·Î (a) 0.00mL  (b) 10.00mL  (c) 25.00mL  (d) 35.00mL  (e) 45.00mL  (f) 46.00mL ¸¸Å­ ÀûÁ¤ÇÏ¿´À» ¶§ °¢°¢ÀÇ pH¸¦ °è»êÇÏ°í ÀûÁ¤°î¼±À» ±×·Á¶ó. (3Á¡ x 7)
          H
2NNH2 + H2O = H2NNH3+ + OH-      Kb = 1.3 x 10-6

8. Kjeldahl method¿¡ ´ëÇØ ¼³¸íÇ϶ó. (12Á¡)

9. ¹éÆ÷µµÁÖ ½Ã·á 50.00mL¸¦ 0.03776M NaOH·Î ÀûÁ¤ÇÏ¿© Æä³îÇÁÅ»·» Á¾¸»Á¡¿¡ µµ´ÞÇÏ¿´À» ¶§ 21.48mL°¡ ¼ÒºñµÇ¾ú´Ù. Æ÷µµÁÖ 100mL´ç µé¾îÀÖ´Â tartaric acid ( H2C4H4O6, 2´ç·® )´Â ¸î gÀΰ¡ ?  (6Á¡) ( Æ÷µµÁÖ¿¡¼­ »êÀº tartaric acid ¹Û¿¡ ¾ø´Ù°í °¡Á¤ÇÑ´Ù. )

10. µµ½Ã°ø±â½Ã·á 3.00L¸¦ 0.0116M Ba(OH)2 50.0mL ¿ë¾×¿¡ Åë°ú½ÃÄÑ BaCO3 ÇüÅ·ΠħÀü½ÃÄ×´Ù. °ú·®ÀÇ ¿°±â¸¦ 0.0108M HCl·Î ¿ªÀûÁ¤ÇÏ¿´´õ´Ï 23.6mL °¡ Àû°¡µÇ¾ú´Ù. ¸¸¾à CO2ÀÇ ¹Ðµµ°¡ 1.98g/L ¿´´Ù°í ÇÑ´Ù¸é °ø±âÁßÀÇ CO2 ÇÔ·®Àº ppm( Áï mL CO2/106mL °ø±â)À¸·Î ¾ó¸¶À̰ڴ°¡ ? (7Á¡)

* ¿øÀÚ·® H:1.008, C:12.011, O:16.000, Cl:35.453

 

 

ºÐ¼®È­ÇÐ ¥° ( 92Çг⵵ 1Çбâ 2Â÷½ÃÇè, 92.5.6 )

1. concentrated H2SO4( d = 1.84g/mL, 95% )¸¦ ÀÌ¿ëÇÏ¿© 0.120M H2SO4 500mL¸¦ ¸¸µé·Á°í ÇÑ´Ù. ¾î¶»°Ô ÇÏ¸é µÉ±î? ( H:1.01, S:32.06, O:16.00 ) (7Á¡)

2. »ìÃæÁ¦ ½Ã·á 1.534g¼Ó¿¡ µé¾î ÀÖ´Â arsenicÀ» Àû´çÇÑ ¹æ¹ýÀ» ÀÌ¿ëÇÏ¿© ¸ðµÎ H3AsO4·Î º¯È­½ÃÄ×´Ù. ±× ÈÄ ÀÌ »êÀ» ÁßÈ­½ÃŲ ´ÙÀ½ 0.08578M AgNO3¸¦ Á¤È®È÷ 42.25mL ÷°¡ÇÏ´Ï ¸ðµç arsenicÀÌ Ag3AsO4 ħÀüÀÌ µÇ¾ú´Ù. ¿©°ú¾×°ú ħÀüÀ» ¾ÄÀº ¾×¿¡ µé¾î ÀÖ´Â °ú·®ÀÇ Ag+ ¾çÀ» ¾Ë¾Æº¸±â À§ÇÏ¿© 0.1000M KSCN À¸·Î ÀûÁ¤ÇÏ¿´´õ´Ï 10.35mL°¡ Àû°¡µÇ¾ú´Ù. ÀûÁ¤¹ÝÀÀÀº ´ÙÀ½°ú °°´Ù.    Ag+ + SCN- = AgSCN   ½Ã·á¼Ó¿¡ µé¾îÀÖ´Â arsenicÀÌ ¸ðµÎ As2O3 ÇüÅ·ΠÁ¸ÀçÇÑ´Ù°í ÇÏ°í As2O3ÀÇ ÇÔÀ¯·® %¸¦ °è»êÇ϶ó.(As:74.92, O:16.00) (7Á¡)

3. ´ÙÀ½°ú °°Àº ¿ë¾× 100mL¿¡¼­ ³ìÀ» ¼ö ÀÖ´Â PbI2ÀÇ ¾ç(g)À» °è»êÇ϶ó.
(a) H
2O (4Á¡)    (b) 4.00 x 10-2M NaI (4Á¡)     (c) 4.00 x 10-2M Pb(NO3)2 (4Á¡)    (d) 0.100M KClO4 (¿©±â¼­´Â È°µ¿µµ¸¦ ÀÌ¿ëÇ϶ó. ¥á (Pb2+) = 4.5¡Ê,  ¥á(I-) = 3.0¡Ê) (7Á¡)         (Pb:207.20, I:126.90,  Ksp(PbI2) = 7.1 x 10-9 ) Debye-Hückel½Ä   - log fA = { 0.51 ZA2( ¥ì)1/2 } / { 1 + 0.33 ¥áA(¥ì )1/2 }

4. ¹°¿¡¼­ÀÇ MnSÀÇ ¿ëÇصµ¸¦ ±¸Ç϶ó. (15Á¡)
   ( K
sp = 3 x 10-13, H2SÀÇ K1 = 5.7 x 10-8, K2 = 1.2 x 10-15 )

5. 0.10M In3+ ¿Í 0.10M Tl+·Î ÀÌ·ç¾îÁø ¿ë¾×¿¡ ħÀüÁ¦·Î¼­ IO3- ¸¦ ÀÌ¿ëÇÏ¸é µÎ ÀÌ¿ÂÀ» Á¤·®ÀûÀ¸·Î ºÐ¸®ÇÒ ¼ö ÀÖÀ»±î? ¾øÀ»±î? ±× ÀÌÀ¯´Â?   Ksp( In(IO3)3 ) = 3.3 x 10-11, Ksp( TlIO3 ) = 3.1 x 10-6 (7Á¡)

6. Cl- ¿Í ClO4- ¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â ½Ã·á 2.215gÀÇ ½Ã·á¸¦ ¹°¿¡ ³ì¿© 250.0mL ¿ë¾×À» ¸¸µé¾ú´Ù. ÀÌ ¿ë¾× 50.0mL¸¦ ÃëÇÏ¿© 0.08625M AgNO3 ¿ë¾×À¸·Î ÀûÁ¤ÇÏ¿´´õ´Ï 12.43mL°¡ Àû°¡µÇ¾ú´Ù. ¶Ç µû·Î ÀÌ ½Ã·á¿ë¾× 50.00mLÀ» ´Ù½Ã ÃëÇÏ¿© »ê¼º¿ë¾×ÇÏ¿¡¼­ V2(SO4)3 ¸¦ ÀÌ¿ëÇÏ¿© ClO4-¸¦ ¸ðµÎ Cl- ·Î ȯ¿ø½ÃÄ×´Ù.(ÀÌ ¶§ ¹Ù³ªµãÀº VO2+·Î »êÈ­µÇ°í SO42-´Â º¯ÇÔÀÌ ¾ø´Ù.) ÀÌ È¯¿ø½ÃŲ ½Ã·á¸¦ 0.08625M AgNO3 ¿ë¾×À¸·Î ÀûÁ¤ÇÏ¿´´õ´Ï 42.34mL °¡ Àû°¡µÇ¾ú´Ù. ½Ã·á¼ÓÀÇ Cl- ¿Í ClO4-ÀÇ ¹«°Ô % ¸¦ °¢°¢ °è»êÇ϶ó. ( Cl:35.453, O:16.000 )(10Á¡)

7. 0.0400M KBr ¿ë¾× 50.0mL ¿¡ 0.0500M AgNO3 ¸¦ (a) 5.00mL  (b) 35.00mL  (c) 39.00mL (d) 40.00mL  (e) 41.00mL  (f) 45.00mL¸¦ ÷°¡ÇÑ ÈÄÀÇ Ag+ ³óµµ¸¦ ±¸Ç϶ó. ±×¸®°í ÀÌ data¸¦ ÀÌ¿ëÇÏ¿© ÀûÁ¤°î¼±À» ±×·Á¶ó.  Ksp(AgBr) = 5.2 x 10-13  (3Á¡ x 7)

8. ÀϹÝÀûÀ¸·Î ¿ë¾×¿¡¼­ ÀüÇØÁúÀÇ ³óµµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ħÀü¹ÝÀÀÀ̳ª Âø¹°¹ÝÀÀ µîÀÇ Çظ® ÆòÇüÀÌ Áõ°¡ÇÏ°Ô µÈ´Ù´Â ÀÌ·ÐÀû ±Ù°Å¸¦ ¹àÇô¶ó. (7Á¡)

9. Àº¹ý ÀûÁ¤ÁßÀÇ ÇϳªÀÎ Fajans¹ý¿¡ ´ëÇØ ¼³¸íÇ϶ó. (7Á¡)

 

 

ºÐ¼®È­ÇÐ ¥° ( 92Çг⵵ 1Çбâ 1Â÷½ÃÇè, 92.3.25 )
1. ´ÙÀ½ ¹Ýº¹ ÃøÁ¤µÈ °¢ sets¿¡ ´ëÇØ ¾Ë¾Æ º¸±â·Î ÇÏÀÚ.
       A: 0.325,  0.333,  0.328,  0.315,  0.335
       B: 0.341,  0.338,  0.336,  0.340,  0.335
a) ¿©±â¼­ A set¿¡ ´ëÇØ ©± mean (2Á¡) ©² median (2Á¡) ©³ spread or range (2Á¡) ©´ standard deviation    (3Á¡) ©µ coefficient of variation (3Á¡)À» ±¸Ç϶ó.
b) A set¿¡¼­ÀÇ 95% confidence intervalÀ» ±¸ÇÏ°í, ±× Àǹ̸¦ ¼³¸íÇ϶ó.(4Á¡)
c) A set¿¡ ÀÖ´Â 0.315¸¦ ¹ö¸± °ÍÀΰ¡ ¶Ç´Â ³õ¾ÆµÑ °ÍÀΰ¡¸¦ ©± Q test (96% confidence level) (3Á¡) ©²     T
n test(95% confidence level) (3Á¡)¸¦ ÀÌ¿ëÇÏ¿© °áÁ¤Ç϶ó.
d) set A¿Í set BÀÇ data¿¡ ´ëÇÑ pooled standard deviationÀ» ±¸Ç϶ó. (4Á¡)
e) set A¿Í set BÀÇ dataÀÇ Æò±Õ°ªÀº 95% confidence level¿¡¼­ ´Ù¸¥°¡? ÀÌÀ¯´Â? (4Á¡)
f) B setÀÇ data°¡ A setÀÇ dataº¸´Ù 95% confidence level¿¡¼­ precisionÀÌ ´õ ÁÁÀº°¡? ÀÌÀ¯´Â? (4Á¡)

           Table.1 Value of t for various levels of probability

Degrees of Freedom

Factor for Confidence Interval

80%

90%

95%

99%

99.9%

1

3.08

6.31

12.7

63.7

637

2

1.89

2.92

4.30

9.92

31.6

3

1.64

2.35

3.18

5.84

12.9

4

1.53

2.13

2.78

4.60

8.60

5

1.48

2.02

2.57

4.03

6.86

6

1.44

1.94

2.45

3.71

5.96

7

1.42

1.90

2.36

3.50

5.40

8

1.40

1.86

2.31

3.36

5.04

9

1.38

1.83

2.26

3.25

4.78

10

1.37

1.81

2.23

3.17

4.59

11

1.36

1.80

2.20

3.11

4.44

12

1.36

1.78

2.18

3.06

4.32

13

1.35

1.77

2.16

3.01

4.22

14

1.34

1.76

2.14

2.98

4.14

¡Ä

1.29

1.64

1.96

2.58

3.29

  

            Table.2 Critical Values for Rejection Quotient Q

Number of Observations

 Qcrit ( Reject if Qexp > Qcrit )

90% Confidence

95% Confidence

99% Confidence

3

0.941

0.970

0.994

4

0.765

0.829

0.926

5

0.642

0.710

0.821

6

0.560

0.625

0.740

7

0.507

0.568

0.680

8

0.468

0.526

0.634

9

0.437

0.493

0.598

10

0.412

0.466

0.568

 

            Table.3 Critical Values for Rejection Quotient Tn

Number of Observations

Tn

95% Confidence

97.5% Confidence

99% Confidence

3

1.15

1.15

1.15

4

1.46

1.48

1.49

5

1.67

1.71

1.75

6

1.82

1.89

1.94

7

1.94

2.02

2.10

8

2.03

2.13

2.22

9

2.11

2.21

2.52

10

2.18

2.29

2.41

 

Table.4  Critical Values for F at the 5% level

Degrees of Freedom

(Denominator)

Degrees of Freedom(Numerator)

2

3

4

5

6

12

20

¡Ä

2

19.00

19.16

19.25

19.30

19.33

19.41

19.45

19.50

3

9.55

9.28

9.12

9.01

8.94

8.74

8.66

8.53

4

6.94

6.59

6.39

6.26

6.16

5.91

5.80

5.63

5

5.79

5.41

5.19

5.05

4.95

4.68

4.56

4.36

6

5.14

4.76

4.53

4.39

4.28

4.00

3.87

3.67

12

3.89

3.49

3.26

3.11

3.00

2.69

2.54

2.30

20

3.49

3.10

2.87

2.71

2.60

2.28

2.12

1.84

¡Ä

3.00

2.60

2.37

2.21

2.10

1.75

1.57

1.00


2. ´Ü¹éÁúÀÇ ÇÔ·®À» ±¸Çϱâ À§ÇÏ¿© Èí±¤µµ¸¦ ÃøÁ¤ÇÏ¿© ¾òÀº calibration curve¸¦ ÀÌ¿ëÇÏ·Á°í ÇÑ´Ù.
   ----------------------------------------------------------------------
       ´Ü¹éÁú ( g)      0.00      9.36      18.72     28.08     37.44
         Èí±¤µµ         0.466     0.676     0.883     1.086     1.280
   ----------------------------------------------------------------------
 a) method of least square¸¦ ÀÌ¿ëÇÏ¿© °¡Àå ÁÁÀº Á÷¼±½ÄÀ» ±¸Ç϶ó. ÀÌ ¶§ slopeÀÇ standard deviationµµ ±¸ÇÏ°í À¯È¿¼ýÀÚ °³³ä¿¡µµ À¯ÀÇÇ϶ó. (15Á¡)
 b) À§ÀÇ ½ÇÇè data¿Í a)¿¡¼­ ±¸ÇÑ Á÷¼±½ÄÀÌ ³ªÅ¸³»¾îÁø graph¸¦ ±×·Á¶ó. (3Á¡)
 c) 3¹ø ÃøÁ¤ÇÏ¿© Æò±ÕÇÏ¿© ¾òÀº unknown protein sampleÀÇ Èí±¤µµ°¡ 0.973 À̾ú´Ù°í ÇÏ°í unknown¼Ó¿¡ µé¾îÀÖ´Â proteinÀÇ ÇÔ·®°ú uncertainty¸¦ ³ªÅ¸³»¾î¶ó. (7Á¡)

 ¨ç Sxx = ¥Ò(xi - x)2 =  ¥Òxi2 - (¥Òxi)2/N            ¨è   Syy = ¥Ò (yi - y)2 = ¥Ò yi2 - ( ¥Òyi)2/N
 ¨é S
xy =  ¥Ò(xi - x)(yi - y) = ¥Ò xiyi - ¥Ò xiyi/N       ¨ê   x  =  ¥Ò xi/N      ¨ë   y  =  ¥Ò yi/N
 ¨ì slope    m = S
xy/Sxx      ¨í  intercept   b = y - mx     ¨î sy = [(Syy - m2Sxx)/(N-2)]1/2       ¨ï sm  = sy/(Sxx)1/2      ¨ð  sb = sy[1/{N-{(¥Òxi)2/¥Òxi2}}]1/2
 ¨ñ s
c = (sy/m)[(1/M) + (1/N) + {(yc - y)2/m2Sxx}]1/2

3. ´ÙÀ½ °è»ê °á°ú¿¡ ´ëÇØ absolute standard deviation°ú coefficient of variationÀ» °è»êÇ϶ó.
   a) y = 243( ¡¾1) x 760( ¡¾2) ¡À 1.006( ¡¾0.006) =              (5Á¡)
   b) y = [ 1.30(¡¾ 0.04) x 10
-16 ]1/3  =                    (5Á¡)

4. ºÒ¼ø¹°À» Æ÷ÇÔÇÑ magnesite, MgCO3 ½Ã·á 0.8507gÀ» HCl·Î ºÐÇؽÃŲ ÈÄ CO2¸¦ ³¯·Áº¸³»¾î calcium oxide¿¡ ¸ð¾Æ Áú·®À» ´Þ¾Æº¸´Ï 0.1934g À̾ú´Ù. ½Ã·á¼Ó¿¡ µé¾îÀÖ´Â MgÀÇ %¸¦ °è»êÇ϶ó. ( Mg: 24.312, C: 12.011, O: 16.000 )  (10Á¡)

5. 0.300gÀÇ BaCl2.2H2O¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â ¿ë¾× 50.0mL¿Í 0.200gÀÇ NaIO3¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â ¿ë¾× 50.0mL¸¦ È¥ÇÕÇÏ¿´´Ù. ¹°¿¡¼­ Ba(IO3)2°¡ ¿ëÇصÇÁö ¾Ê´Â´Ù°í ÇÑ´Ù¸é (a) ħÀüµÈ Ba(IO3)2 ÀÇ ¹«°Ô´Â ¾ó¸¶Àΰ¡ ? (6Á¡) (b) ¿ë¾×¿¡ ¹ÝÀÀÇÏÁö ¾Ê°í ³²¾Æ ÀÖ´Â È­ÇÕ¹°ÀÇ  Áú·®Àº ¾ó¸¶Àΰ¡ ? (6Á¡)
   ( Ba: 137.34, Cl: 35.453, H: 1.008, Na: 23.000, I: 126.904, O: 16.000 )

6. a) Zeta potentialÀ̶õ ¹«¾ùÀ̸ç(5Á¡) b) ÀÌ°ÍÀ» ÀÌ¿ëÇÏ¿© colloid°¡ ¾ÈÁ¤ÇÑ ÀÌÀ¯(2Á¡) ¿Í  c) coagulationÀÌ ÀϾ´Â ÀÌÀ¯(2Á¡)¿¡ ´ëÇØ ¼³¸íÇ϶ó.


 

ºÐ¼®È­ÇÐ ¥° ( 91Çг⵵ 1Çбâ 4Â÷½ÃÇè, 91.6.17 )

1. ÀϹÝÀûÀÎ redox indicatorÀÇ half-reactionÀº ´ÙÀ½°ú °°ÀÌ ¾µ ¼ö ÀÖ´Ù;
             In + 2H
+ + 2e = InH2     E¢ª= 0.600V.
 pH°¡  a) 6.00   ±×¸®°í   b) 8.00 ÀÎ ¿ë¾×¿¡¼­ÀÇ  ÀÌ Áö½Ã¾àÀÇ transition potential range¸¦ °¢°¢ °è»êÇ϶ó. ( 10Á¡ )

2. ´ÙÀ½ ¹ÝÀÀ¿¡ ´ëÇÑ ´ç·®Á¡¿¡¼­ÀÇ Àü±ØÀüÀ§¸¦ °è»êÇ϶ó. ´ç·®Á¡¿¡¼­ÀÇ [H+]= 0.100M ÀÌ´Ù.  ( 15Á¡ )
    MnO
4- + HNO2 = Mn2+ + NO3-   [ E¢ª(MnO4-/Mn2+)= 1.51V,  E¢ª(NO3-/HNO2)= 0.94V ]

3. 0.100M V2+ 50mL¿ë¾×¿¡ 0.05M Sn4+·Î ÀûÁ¤ÇÒ ¶§ 0.05M Sn4+°¡  a) 10mL  b) 49mL  c) 50mL    d) 51mL   µé¾î °¬À» ¶§ÀÇ electrode potentialÀ» °è»êÇ϶ó. ( 15Á¡ )
   [ E¢ª(V
3+/V2+)= -0.256V,  E¢ª(Sn4+/Sn2+)= 0.94V ]

4. Karl Fisher titration¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( ½Ã¾à, ¼ºÁú, ´ç·®Á¡ °üÂû, ÀÀ¿ëµî ) ( 15Á¡ )

5. Ce4+´Â ¿°±â¼º¿ë¾×ÇÏ¿¡¼­ ȯ¿øÁ¦¸¦ Àý´ë·Î ÀûÁ¤ÇÏÁö ¾Ê´Â´Ù. ±× ÀÌÀ¯´Â ? ( 5Á¡ )

6. Na2S2O3¿ë¾×À» Ç¥Á¤Çϱâ À§ÇÏ¿© K2Cr2O7 0.1518gÀ» ¹±Àº HCl¿ë¾× ¼Ó¿¡¼­ ³ìÀÎ ÈÄ °ú·®ÀÇ I-¸¦ °¡ÇÏ°í À̶§ »ý¼ºµÈ I2¸¦ ÀÌ Na2S2O3·Î ÀûÁ¤ÇÏ¿´´õ´Ï 39.75mL°¡ µé¾î°¬´Ù. Na2S2O3ÀÇ M³óµµ´Â ¾ó¸¶Àΰ¡ ? ( 10Á¡ )   ( K: 39.098   Cr: 51.996  O: 15.999 )
 [ E¢ª(Cr
2O72-/Cr3+)= 1.33V,   E¢ª(I2/I-)= 0.536V,   E¢ª(S4O62-/S2O32-)= 0.08V ]

7. Alkali metal sulfateÀÇ ½Ã·á 0.6490gÀ» ³ì¿© 100mL°¡ µÇ°Ô ÇÏ¿´´Ù. ÀÌ Áß 25.00mL¸¦ ÃëÇÏ¿© ¿©±â¿¡ µé¾îÀÖ´ø Na+¸¦ NaZn(UO2)3(OAc)9.6H2O ·Î ħÀü½ÃÅ°°í °É·¯¼­ ¾ÄÀº ÈÄ »êÀ¸·Î ³ì¿© Jones reductor¿¡¼­ uraniumÀ» U3+·Î ȯ¿ø½ÃÄ×´Ù. ´Ù½Ã °ø±â¸¦ ÅëÇÏ¿© U3+¸¦ U4+·Î ¸¸µç ÈÄ 0.1086M Ce4+·Î ÀûÁ¤ÇÏ¿´´õ´Ï 33.33mL°¡ Àû°¡µÇ¾ú´Ù. ½Ã·á ¼Ó¿¡ µé¾î Àִ Na2SO4ÀÇ ¹«°Ô %¸¦ °è»êÇ϶ó. ( 10Á¡ )  ( Na: 22.990,  O: 15.999,  S: 32.06 )     [ E¢ª(Ce4+/Ce3+)= 1.44V,   E¢ª(UO22+/U4+)= 0.334V ]

8. Cu2+´Â chelating agent H2L°ú ¹ÝÀÀÇÏ¿© Âø¹° CuL22-¸¦ ¸¸µé°í CHCl3¿¡ ½±°Ô ³ì°Ô µÈ´Ù. Cu2+ÀÇ 1.00 x 10-4M ¼ö¿ë¾×À» 0.01M H2L ÀÌ ³ì¾ÆÀÖ´Â CHCl3·Î extractÇÏ¿´À» ¶§ µÎ »ó »çÀÌ¿¡¼­ÀÇ Cu³óµµ´Â pH 5.65ÀÏ ¶§ ¶È°°¾Ò´Ù. (*** »ç½ÇÀº ÃßÃâµÇÁö ¾ÊÀ½. ¹®Á¦°¡ À߸øµÇ¾ú´Ù. )
a) CuL
22-°¡ À¯±â»ó¿¡¼­ Çظ®µÇÁö ¾Ê´Â´Ù°í Çϸé ÀÌ system¿¡¼­ ÆòÇüÀ» ³ªÅ¸³»´Â ½ÄÀ» ¸ðµÎ ½á¶ó. ( 5Á¡ )
b) K
ex¸¦ °è»êÇ϶ó. ( 5Á¡ )
c) pH 6.00 ÀÏ ¶§ ÀÌ systemÀÇ distribution ratio¸¦ °è»êÇ϶ó. ( 5Á¡ )
d) ¸¸¾à pH 6.00À¸·Î ¿ÏÃæµÈ 5.00 x 10
-5M Cu2+ 50mL¸¦ 0.0100M H2LÀÌ Æ÷ÇÔµÈ CHCl3 25.00mL·Î extractÇÏ·Á¸é ¼ö¿ë¾×»ó¿¡ ÀÖ´Â Cu¸¦ 99.9 % Á¦°ÅÇϱâ À§ÇØ ÇÊ¿äÇÑ extractionÀÇ ¼ö´Â ¾ó¸¶Àΰ¡ ? ( 5Á¡ )

 


ºÐ¼®È­ÇÐ ¥° ( 91Çг⵵ 1Çбâ 3Â÷½ÃÇè, 91.6.3 )

1. Buffer solutionÀ» °¡Àå Àß ¸¸µé ¼ö ÀÖ´Â ¹æ¹ýÀ» buffer capacity¿Í ionic strengthÀÇ ÃøÁ¤ °ï¶õÀ» °í·ÁÇÏ¿© ¼³¸íÇ϶ó. ( 10Á¡ )

2. 2.0 x 10-7M HCl ¼ö¿ë¾×ÀÇ pH´Â ? ( 5Á¡ )

3. pH°¡ 3.50ÀÎ ¿ÏÃæ¿ë¾×À» ¸¸µé±â À§ÇØ 1.00M formic acid( HCOOH ) 400mL¿¡ ÷°¡Çؾ߸¸ ÇÏ´Â NaOH´Â ¸î g Àΰ¡ ? ( HCOOHÀÇ Ka= 1.77 x 10-4, Na: 23.00, O: 16.00, H: 1.00, NaOH¸¦ ÷°¡Çصµ ºÎÇÇÀÇ º¯È­°¡ ¾ø´Ù°í °¡Á¤ÇÑ´Ù. ) ( 10Á¡ )

4. H2L+´Â À̾缺ÀÚ»êÀ¸·Î¼­ÀÇ ¿ªÇÒÀ» ÇÏ¿© HL, L-µîÀ¸·Î µÇ±âµµ Çϴµ¥ À̶§ HL¸¸ÀÌ Á¸ÀçÇÒ ¶§ÀÇ [H+]´Â ´ÙÀ½°ú °°À½À» Áõ¸íÇ϶ó. ( 15Á¡ )
          [H
+] ¡Ö  {(K1K2CHL + K1Kw)/(K1 + CHL)}1/2 ¡Ö  (K1K2)1/2
 ¿©±â¼­ K
1,K2´Â H2L+ÀÇ »ê Çظ®»ó¼öÀÌ°í CHLÀº HL ÀÇ Ã³À½³óµµ(Áï formal ³óµµ)ÀÌ´Ù.

5. 0.100M Na2CO3¿ë¾× 50mL¸¦ 0.200M HCl¿ë¾×À¸·Î ÀûÁ¤ÇÏ·Á°í ÇÑ´Ù. ÀÌ HClÀÇ Àû°¡ºÎÇÇ°¡  a) 0.00mL   b) 12.50mL   c) 24.00mL   d) 25.00mL   e) 26.00mL   f) 37.50mL g) 49.00mL  h) 50.00mL i) 51.00mL  ÀÏ ¶§ÀÇ °¢°¢ pH¸¦ ±¸ÇÏ°í, ÀûÁ¤°î¼±À» ±×·Á¶ó.
   H
2CO3ÀÇ Ka1= 4.45 x 10-7, Ka2 = 4.7 x 10-11 ÀÌ´Ù ( 15Á¡ )

6. Carbonate error¿¡ ´ëÇØ ¼³¸íÇÏ°í ÀÌ°ÍÀ» ÇÇÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ½á¶ó. ( 5Á¡ )

7. Kjeldahl method¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 10Á¡ )

8. Amphiprotic solvent»ó¿¡¼­ neutralizationÇÒ·Á°í ÇÒ ¶§ °í·ÁÇØ¾ß ÇÒ Á¡¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 15Á¡ )

9. BrO3-¿Í Br-¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â ½Ã·á 3.650g À» ¹°¿¡ ³ì¿© 250mL°¡ µÇ°Ô ÇÏ¿´´Ù. »ê¼ºÈ­½ÃŲ ÈÄ µû·Î ÃëÇÑ ½Ã·á 25mL¿¡ AgNO3¸¦ ³Ö¾î AgBrħÀüÀ» ½ÃÄÑ ¿©°úÇÏ°í ¾ÄÀº ÈÄ Ni(CN)42- ¿ë¾×¿¡¼­ ³ì¿´´Ù; Ni(CN)42- + 2AgBr(S) ¡æ 2Ag(CN)2- + Ni2+ + 2Br- . À̶§ ºÐ¸®µÇ¾î  ³ª¿Â Ni2+À» 0.02089M EDTA·Î ÀûÁ¤ÇÏ¿´´õ´Ï 26.73mL°¡ ¼Ò¸ðµÇ¾ú´Ù. ´Ù½Ã ½Ã·á 10mL¸¦ ÃëÇÏ¿© As3+¸¦ ³Ö¾î ¸ðµç BrO3-¸¦ ȯ¿ø½ÃÄÑ Br-¸¦ ¸¸µç ÈÄ AgNO3¸¦ ÷°¡ÇÏ¿© AgBrħÀüÀ» ½ÃŲ ÈÄ À§¿Í °°Àº ¹æ¹ýÀ¸·Î ³ìÀÌ°í ³ª¿Â Ni2+¸¦ °°Àº ³óµµÀÇ EDTA·Î ÀûÁ¤ÇÏ¿´´õ´Ï 21.94mL°¡ ÷°¡ µÇ¾ú´Ù. ½Ã·áÁßÀÇ NaBr°ú NaBrO3ÀÇ % ¸¦ ±¸Ç϶ó. ( 15Á¡ )
 ( Na: 23.00,  Br: 79.90,  O: 16.00 )

 

 

ºÐ¼®È­ÇÐ ¥° ( 91Çг⵵ 1Çбâ 2Â÷½ÃÇè, 91.5.14 )

1. Concentrated H2SO4 ( 95% w/w, ¹Ðµµ 1.84g/mL )¸¦ ÀÌ¿ëÇÏ¿© 0.08M H2SO4 2.0L¸¦ ¸¸µé·Á°í ÇÑ´Ù. ¾î¶»°Ô ÇÏ¸é µÉ±î ? ( H: 1.0079, S: 32.06, O: 15.9994 )  ( 10Á¡ )

2. 1.223gÀÇ »ìÃæÁ¦½Ã·á¿¡ µé¾î ÀÖ´Â ¸ðµç As¸¦ Àû´çÇÑ Ã³¸®¹æ¹ýÀ¸·Î H3AsO4·Î ¸¸µç ÈÄ ÀÌ »êÀ» ÁßÈ­½ÃÅ°°í 0.07891MÀÇ AgNO3¸¦ Á¤È®È÷ 40.00mL¸¦ ÷°¡ÇÏ¿© ¸ðµÎ Ag3AsO4·Î ħÀü½ÃÄ×´Ù.  Ä§ÀüÀ» ºÐ¸®Çس½ ÈÄ ¿©ºÐÀ¸·Î ³²¾ÆÀÖ´ø Ag+¸¦ 0.100M KSCNÀ¸·Î ÀûÁ¤ÇÏ¿´´õ´Ï 11.27mL°¡ ÷°¡µÇ¾ú´Ù. ÀÌ ¶§ »ý±ä ħÀü»ý¼º¹°Àº AgSCNÀÌ´Ù. ½Ã·áÁßÀÇ As2O3ÀÇ ÇÔ·® % ¸¦ ±¸Ç϶ó. ( As: 74.9216 )  ( 10Á¡ )

3. 1 titer°¡ 11.0mg Fe2O3/mLÀÎ KMnO4 ¿ë¾×ÀÇ molarity´Â ¾ó¸¶Àΰ¡ ?  ¹ÝÀÀÀº ´ÙÀ½°ú °°´Ù. ( Fe: 55.847 ) ( 10Á¡ )
      MnO
4- +  5Fe2+  +  8H+  ¡æ  Mn2+  +  5Fe3+  +  4H2O

4. ¹°Àº ¼¾ ¹«±â»ê¿¡ ´ëÇØ leveling solvent¶ó°í ÇÏ°í ¹Ý¸é¿¡ ethanolÀº differentiating solvent¶ó°í ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡ ? ( 5Á¡ )

5. 0.0333MÀÇ Mg(ClO4)2¿ë¾×¿¡ µé¾îÀÖ´Â Cd2Fe(CN)6ÀÇ ¿ëÇصµ¸¦  a) activity  b) molar concentrationÀ» ÀÌ¿ëÇÏ¿© °è»êÇ϶ó. ( À̶§ Cd2+¿Í Fe(CN)64-ÀÇ ¼öÈ­¹Ý°æÀº 5¡ÊÀÌ´Ù.) ( 15Á¡ )                Cd2Fe(CN)6(S)   =   2Cd2+   +   Fe(CN)64-       Ksp = 3.2 x 10-17

6. H3O+ÀÇ ³óµµ°¡ 1.0 x 10-4M ÀÏ ¶§ÀÇ CuSÀÇ molar solubility¸¦ °è»êÇ϶ó. ( 15Á¡ )
   (  k
sp(CuS)= 6.0 x 10-36, H2S ÀÇ Ka1= 5.7 x 10-8,  Ka2= 1.2 x 10-15 )

7. CuCl2-ÀÇ formation constant´Â ´ÙÀ½°ú °°ÀÌ ³ªÅ¸³¾ ¼ö ÀÖ´Ù;   Cu++ 2Cl- = CuCl2-, Kf = 7.9 x 104. NaClÀÇ ³óµµ°¡ 1.0 x 10-3MÀÎ ¿ë¾×¿¡¼­ÀÇ CuCl( Ksp = 1.2 x 10-6 )ÀÇ ¿ëÇصµ¸¦ °è»êÇ϶ó. ( 15Á¡ )

8. ¿ë¾× 200mL¿¡ Pb(OH)2 0.200gÀ» ³ìÀ̱â À§ÇÏ¿© À¯ÁöµÇ¾î¾ß ÇÏ´Â [OH-]ÀÇ ³óµµ´Â ¾ó¸¶ÀÎ
   °¡ ? ( Pb: 207.2 )   Pb(OH)
2(S) + OH-  =  Pb(OH)3-    Kf = 5.0 x 10-2    ( 5Á¡ )

9. Volhard method·Î Cl-¸¦ Á¤·®ÇÒ ¶§´Â Br-¸¦ Á¤·®ÇÒ ¶§º¸´Ù ´õ ¸¹Àº ´Ü°è°¡ ÇÊ¿äÇÑ°¡ ? ¾Æ´Ñ°¡ ?  ±× ÀÌÀ¯´Â ?  ( 5Á¡ )

10. Cl- ¿Í ClO4-¸¦ Æ÷ÇÔÇÑ ½Ã·á 1.998gÀ» ¹°¿¡ ³ì¿© 250mL ¿ë¾×À¸·Î ¸¸µé¾ú´Ù. ÀÌ ¿ë¾× 50mL¸¦ ÃëÇÏ¿© Cl-ÀÇ ¾çÀ» ¾Ë¾Æº¸±â À§ÇÏ¿© 0.08551M AgNO3·Î ÀûÁ¤ÇÏ¿´À»¶§ 13.97mL°¡ ÇÊ¿äÇÏ¿´´Ù. ¶Ç´Ù½Ã ¿ë¾× 50mL¸¦ ÃëÇÏ¿© V2(SO4)3¸¦ ÀÌ¿ëÇÏ¿© ClO4- ¸¦ Cl-·Î ȯ¿ø½ÃŲ ÈÄ À§ÀÇ AgNO3·Î ÀûÁ¤ÇÏ¿´À» ¶§ 40.12mL°¡ µé¾î°¬´Ù. ȯ¿ø¹ÝÀÀ½ÄÀº ´ÙÀ½°ú °°´Ù.
          ClO
4-  +  4V2(SO4)3  +  4H2O  ¡æ  Cl-  +  12SO42-  +  8VO2+  +  8H+
½Ã·á ¼ÓÀÇ Cl
- ¿Í ClO4-ÀÇ Áú·® % ¸¦ °¢°¢ ±¸Ç϶ó.  ( Cl: 35.453 )  ( 10Á¡ )

 

 

ºÐ¼®È­ÇÐ ¥°( 91Çг⵵ 1Çбâ 1Â÷½ÃÇè, 91.4.10 )

1. ´ÙÀ½ ¹Ýº¹ ÃøÁ¤µÈ °¢ sets¿¡ ´ëÇØ ¾Ë¾Æº¸±â·Î ÇÏÀÚ.
       A:  0.624,  0.613,   0.596,   0.607,   0.582
       B:  0.628,  0.622,   0.627,   0.635
a) ¿©±â¼­ A set¿¡ ´ëÇØ ©± mean ( 3Á¡ ) ©² median ( 3Á¡ ) ©³ spread or range ( 3Á¡ ) ©´ standard    deviation ( 6Á¡ ) ©µ coefficient of variation ( 5Á¡ ) À» ±¸Ç϶ó.
b) A set¿¡¼­ÀÇ 95% confidence intervalÀ» ±¸ÇÏ°í, ±× Àǹ̸¦ ¼³¸íÇ϶ó. ( 7Á¡ )
c) A set¿¡¼­ ¸¶Áö¸·¿¡ ÀÖ´Â 0.582´Â ¹ö¸± °ÍÀΰ¡ ¶Ç´Â ¾Æ´Ñ°¡¸¦ ©± Q test ( 96% confidence level) ( 5Á¡      ) ©² T
n test ( 95% confidence level) ( 5Á¡ )À» ÅëÇØ °áÁ¤Ç϶ó.
d) set A¿Í set B¸¦ ÀÌ¿ëÇÏ¿© pooled standard deviationÀ» ±¸Ç϶ó. ( 7Á¡ )
e) set AÀÇ data¿Í set BÀÇ dataÀÇ Æò±Õ°ªÀº 95% confidence level¿¡¼­ ´Ù¸¥ °ÍÀΰ¡ ? ( 7Á¡ )
f) B setÀÇ data°¡ A setÀÇ dataº¸´Ù 95% confidence level¿¡¼­ precisionÀÌ ´õ ÁÁÀº°¡? ( 7Á¡ )

           Table.1 Value of t for various levels of probability

Degrees of Freedom

Factor for Confidence Interval

80%

90%

95%

99%

99.9%

1

3.08

6.31

12.7

63.7

637

2

1.89

2.92

4.30

9.92

31.6

3

1.64

2.35

3.18

5.84

12.9

4

1.53

2.13

2.78

4.60

8.60

5

1.48

2.02

2.57

4.03

6.86

6

1.44

1.94

2.45

3.71

5.96

7

1.42

1.90

2.36

3.50

5.40

8

1.40

1.86

2.31

3.36

5.04

9

1.38

1.83

2.26

3.25

4.78

10

1.37

1.81

2.23

3.17

4.59

11

1.36

1.80

2.20

3.11

4.44

12

1.36

1.78

2.18

3.06

4.32

13

1.35

1.77

2.16

3.01

4.22

14

1.34

1.76

2.14

2.98

4.14

¡Ä

1.29

1.64

1.96

2.58

3.29

  

            Table.2 Critical Values for Rejection Quotient Q

Number of Observations

 Qcrit ( Reject if Qexp > Qcrit )

90% Confidence

95% Confidence

99% Confidence

3

0.941

0.970

0.994

4

0.765

0.829

0.926

5

0.642

0.710

0.821

6

0.560

0.625

0.740

7

0.507

0.568

0.680

8

0.468

0.526

0.634

9

0.437

0.493

0.598

10

0.412

0.466

0.568

 

            Table.3 Critical Values for Rejection Quotient Tn

Number of Observations

Tn

95% Confidence

97.5% Confidence

99% Confidence

3

1.15

1.15

1.15

4

1.46

1.48

1.49

5

1.67

1.71

1.75

6

1.82

1.89

1.94

7

1.94

2.02

2.10

8

2.03

2.13

2.22

9

2.11

2.21

2.52

10

2.18

2.29

2.41

 

Table.4  Critical Values for F at the 5% level

Degrees of Freedom

(Denominator)

Degrees of Freedom(Numerator)

2

3

4

5

6

12

20

¡Ä

2

19.00

19.16

19.25

19.30

19.33

19.41

19.45

19.50

3

9.55

9.28

9.12

9.01

8.94

8.74

8.66

8.53

4

6.94

6.59

6.39

6.26

6.16

5.91

5.80

5.63

5

5.79

5.41

5.19

5.05

4.95

4.68

4.56

4.36

6

5.14

4.76

4.53

4.39

4.28

4.00

3.87

3.67

12

3.89

3.49

3.26

3.11

3.00

2.69

2.54

2.30

20

3.49

3.10

2.87

2.71

2.60

2.28

2.12

1.84

¡Ä

3.00

2.60

2.37

2.21

2.10

1.75

1.57

1.00


2. Á¶Á¦ ¾àÇ°¼Ó¿¡ µé¾î ÀÖ´Â codeineÀ» ºÐ¼®ÇÏ´Â ¹æ¹ýÀ» ÀÌ¿ëÇÏ¿© codeineÀÌ µé¾î ÀÖÁö ¾ÊÀº ½Ã·á¿¡ ´ëÇØ ¾òÀº °á°ú´Â ´ÙÀ½°ú °°´Ù; 0.2, -0.1, 0.0, 0.3, 0.1, 0.3mg.  4¹ø ºÐ¼®ÇÑ °á°úÀÇ Æò±Õ¿¡ ±Ù°ÅÇÏ°í 99% confidence level¿¡¼­ÀÇ detection limit( codeineÀÇ mgÀ¸·Î )¸¦ °è»êÇ϶ó. ( 10Á¡ )

3. peptizationÀ̶õ ¹«¾ùÀÌ¸ç ¾î¶»°Ô ÀÌ°ÍÀ» ÇÇÇÒ ¼ö ÀÖÀ»±î ? ( 5Á¡ )

4. 0.6447gÀÇ ÀÌ»êÈ­¸Á°£(manganese dioxide)À» ¿°È­ÀÌ¿ÂÀ» Æ÷ÇÔÇÏ°í ÀÖ´Â ½Ã·á 1.1402gÀÌ ³ì¾ÆÀÖ´Â »ê¼º¿ë¾×¿¡ ÷°¡ÇÏ¿´´Ù. ¿°¼Ò±âüÀÇ ¹ß»ýÀÌ ¿Ï·áµÈ ÈÄ ³²¾Æ ÀÖ´Â ÀÌ»êÈ­¸Á°£À» ¿©°úÇÏ¿© ¸ðÀ¸°í ¾Ä°í ´Þ¾Ò´õ´Ï 0.3521gÀ̾ú´Ù. ÀÌ ºÐ¼®°á°ú¸¦ ¿°È­ÀÌ¿ÂÀ» Æ÷ÇÔÇÏ°í ÀÖ´Â ½Ã·á ÁßÀÇ ¿°È­ ¾Ë·ç¹Ì´½ÀÇ %·Î ³ªÅ¸³»¾î¶ó. ( Mn: 54.938,  O: 15.999,  Cl: 53.453, Al: 26.982 ) ( 20Á¡ )

5. ¿°È­À̿°ú ¿ä¿Àµå ÀÌ¿ÂÀ» Æ÷ÇÔÇÏ°í ÀÖ´Â ½Ã·á 0.6407gÀ» ÇҷΰÕÈ­Àº ħÀüÀ¸·Î ¸¸µé¾î Áú·®À» ´Þ¾Ò´õ´Ï 0.4430g ÀÌ µÇ¾ú´Ù. ±× ´ÙÀ½ ÀÌ Ä§ÀüÀ» Cl2±âü¼Ó¿¡¼­ ¼¼°Ô °¡¿­ÇÏ¿© ¸ðµç AgI¸¦ AgCl·Î º¯È­½ÃÄÑ Ä§ÀüÀÇ Áú·®À» ´Þ¾Æº» °á°ú 0.3181gÀÌ µÇ¾ú´Ù. ½Ã·á ¼Ó¿¡ µé¾îÀÖ´Â ¿°È­À̿°ú ¿ä¿Àµå ÀÌ¿ÂÀÇ %¸¦ °è»êÇ϶ó. (  Ag: 107.868,   I: 126.904, Cl: 35.453 ) ( 10Á¡ )

6. ħÀüÀÔÀÚ¸¦ Å©°Ô ÇÏ´Â ¹æ¹ýÀ» »ó´ë °úÆ÷È­µµ¿Í ¿¬°üÁö¾î ¼³¸íÇ϶ó. ( 7Á¡ )

 

 

ºÐ¼®È­ÇÐ ¥°( 90Çг⵵ 1Çбâ 4Â÷½ÃÇè, 90.6.14 )

1. 0.0200M NH4Cl 10mL¿Í 0.0320M (CH3)3N 10mL¸¦ ÇÔ²² È¥ÇÕÇÏ¿´À» ¶§ÀÇ pH´Â ¾ó¸¶Àΰ¡ ?
   ( 10Á¡ ) ( NH
4+ ÀÇ Ka= 5.70 x 10-10,  (CH3)3N ÀÇ Kb= 6.31 x 10-5 )

2. Chelate effect¿¡ ´ëÇØ ¼³¸íÇ϶ó.( 10Á¡ )

3. 0.0500M Mg2+ 50mL¸¦ 0.0500M EDTA·Î ÀûÁ¤ÇÑ´Ù°í ÇÏÀÚ.  Mg2+¿ë¾×Àº pH 10À¸·Î ¿ÏÃæµÇ¾î Àִµ¥ ÀÌ ¶§  ¥á(Y4-)´Â 0.36ÀÌ´Ù.  EDTA°¡ ´ÙÀ½ °¢ ºÎÇǸ¸Å­ Àû°¡µÇ¾úÀ» ¶§ ¿ë¾×¿¡ ÀÖ´Â [Mg2+]ÀÇ ³óµµ´Â ¾ó¸¶Àΰ¡ ?   ÀÌ ¶§ Kf(MgY2-)= 6.2 x 108 ÀÌ´Ù. ( 15Á¡ )
   a) 5.0mL     b) 50mL      c) 51.0mL

4. ´ÙÀ½ ¿ë¾îµéÀ» °£´ÜÈ÷ ¼³¸íÇ϶ó. ( 15Á¡ )
   a) chelating ligand             b) conditional formation constant
   c) auxiliary complexing agent   d) blocking ion     e) masking agent

5. Back titration°ú  displacement titration¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 10Á¡ )

6. 1.00M HCl¿ë¾×¿¡¼­ 0.0100M Tl+ 100mL¸¦ 0.0100M IO3-·Î ÀûÁ¤ÇÏ¿´À» ¶§ ´ç·®Á¡¿¡¼­ÀÇ potentialÀ» °è»êÇ϶ó. ÀÌ ¶§ potential ÃøÁ¤Àº PtÀü±Ø°ú SCEÀü±Ø(E = 0.241V)»çÀÌ¿¡¼­ ÃøÁ¤µÈ´Ù. ( 10Á¡ )
         IO
3- +  2Cl- + 6H+  +  4e  ¡æ  ICl2-  +  3H2O      E¢ª= 1.24V
                    Tl
3+  +  2e     ¡æ    Tl+               E¢ª= 0.77V

7. Jones reductor¿Í Walden reductor¸¦ ºñ±³ ¼³¸íÇ϶ó. ( 10Á¡ )

8. Redox indicatorÀÇ color°¡ º¯ÇÏ´Â potential range¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 10Á¡ )

9. ±Ý¼ÓÀÌ¿ÂÀ» extractionÇϴµ¥ ´ëÇÑ distribution coefficient°¡ ¼ö¿ë¾×ÀÇ pH¿Í À¯±â»ó¿¡¼­ÀÇ ligandÀÇ ³óµµ¿¡ µû¶ó ´Þ¶óÁüÀ» º¸¿©¶ó. ( 10Á¡ )

 

 

ºÐ¼®È­ÇÐ ¥°( 90Çг⵵ 1Çбâ 3Â÷½ÃÇè, 90.5.24 )

1. Phosphoric acid (H3PO4)ÀÇ Ka2¹ÝÀÀ ¹× disodium oxalate(Na2C2O4)ÀÇ Kb2¹ÝÀÀÀ» ½á¶ó. ( 10Á¡ )

2. ½ÇÁ¦·Î pH 9.5ÀÎ ¿ÏÃæ¿ë¾×À» 1 L ¸¸µé·Á°í ÇÑ´Ù. ¾î¶»°Ô ÇÏ¸é °¡Àå ÁÁÀ»±î ? ( 10Á¡ )

3. 0.10M ethylamine(CH3CH2NH2)ÀÇ pH´Â 11.80 ÀÌ´Ù.  ethylamineÀÇ Kb´Â ¾ó¸¶Àΰ¡ ? ( 5Á¡ ) ÀÌ Kb°ªÀ» ÀÌ¿ëÇÏ¿© 0.10M ethylammonium chloride(CH3CH2NH3+Cl-)ÀÇ pH¸¦ °è»êÇ϶ó. ( 5Á¡ )

4. a) ¹° 500mL¿¡ K2CO3(F.W= 138.206) 4.00g ÀÌ ³ì¾Æ Àִµ¥ ÀÌ ¿ë¾×À» pH 10.80 ÀÌ µÇ°Ô Çϱâ À§Çؼ­´Â NaHCO3(F.W= 84.007)À» ¸î g ÷°¡ÇØ¾ß Çϴ°¡ ? ( 5Á¡ ) ¿©±â¼­ H2CO3ÀÇ  Ka1= 4.45 x 10-7, Ka2= 4.69 x 10-11  ÀÌ´Ù.
b) ¸¸¾à a)¿ë¾×¿¡ 0.100M HCl 10mL¸¦ ÷°¡Çϸé pH´Â ¾ó¸¶³ª µÉ±î ? ( 5Á¡ )
c) pH 10ÀÎ ¿ë¾×À» ¸¸µé±â À§Çؼ­´Â 4.00gÀÇ K
2CO3¸¦ ³ìÀÎ ¿ë¾× 250mL¿¡ 0.320M HNO3 ¸î mL ¸¦ ÷°¡Çؾ߸¸ Çϴ°¡ ? ( 5Á¡ )

5. Ka1= 1.00 x 10-4 °ú Ka2= 1.00 x 10-8 ÀÎ diprotic acid, H2A ¿¡ ´ëÇØ »ý°¢ÇØ º¸ÀÚ.
   ´ÙÀ½ °¢ ¿ë¾×¿¡¼­ÀÇ pH, [H
2A], [HA-] ¿Í [A2-]ÀÇ ³óµµ¸¦ ±¸Ç϶ó. ( 15Á¡ )
   a) 0.100M H
2A      b) 0.100M NaHA       c) 0.100M Na2A

6. 3.42gÀÇ oxalic acid(HOOC-COOH, F.W= 90.036, pKa1= 1.252, pKa2= 4.266)¸¦ ³ì¿© ¿ë¾×À» 500mL°¡ µÇ°Ô ÇÑ ÈÄ pH°¡ 4.50ÀÌ µÇµµ·Ï Çϱâ À§Çؼ­´Â 0.900M KOH´Â ¸î mL¸¦ °¡Çؾ߸¸ Çϴ°¡ ? ( 10Á¡ )

7. Gran's plot¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 10Á¡ )

8. NaOH¿ë¾×À» standardizationÇÏ´Â ¹æ¹ý¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 10Á¡ )

9. ´ÙÀ½À» °£´ÜÈ÷ ¼³¸íÇ϶ó. ( 10Á¡ )
   a) leveling effect
   b) buffer capacity ( or buffer intensity )

 

 

ºÐ¼®È­ÇÐ ¥°( 90Çг⵵ 1Çбâ 2Â÷½ÃÇè, 90.5.3 )

1. ´ÙÀ½À» °£´ÜÈ÷ ¼³¸íÇ϶ó. ( 10Á¡ )
   1) disproportionation       2) common ion effect     3) digestion
   4) coprecipitation          5) blank titration

2. ¸¸¾à 0.1M Cl-, Br-, CO32-, CrO42-¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â ¿ë¾×¿¡ Ag+¸¦ ³ÖÀ¸¸é ¾î´À ¼ø¼­·Î ħÀüÀÌ »ý±â°Ú´Â°¡ ?    [ ÀÌ ¶§  Ksp(AgCl)= 1.8 x 10-10,    Ksp(AgBr)= 5.0 x 10-13,
   K
sp(Ag2CrO4) = 1.2 x 10-12,    Ksp(Ag2CO3) = 8.1 x 10-12 ]        ( 10Á¡ )

3. ÀüÇØÁúÀÇ ³óµµ°¡ Áõ°¡ÇÒ¼ö·Ï ħÀü¹°ÀÇ ¿ëÇصµ°¡ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡ ? ( 5Á¡ )

4. Ba(IO3)2·Î Æ÷È­µÈ 0.05M Mg(NO3)2 ¿ë¾×¿¡¼­ÀÇ Ba2+ ³óµµ¸¦ °è»êÇ϶ó. ÀÌ ¶§ È°µ¿µµ °è¼ö¸¦ °í·ÁÇ϶ó. Ksp[Ba(IO3)2] = 1.5 x 10-9,   ¼öÈ­¹Ý°æ   Ba2+: 500pm, IO3-: 450pm   ( 15Á¡ )

5. pH= 4.0À¸·Î À¯ÁöµÈ ¿ë¾×¿¡¼­ÀÇ CaC2O4( F.W = 128.098 )ÀÇ ¿ëÇصµ(g/L)¸¦ °è»êÇ϶ó.( 15Á¡ )  ´ÙÀ½°ú °°Àº ÆòÇüÀÌ »ý±ä´Ù.
    CaC
2O4(S)       =  Ca2+ +  C2O42-        Ksp= 1.3 x 10-8
    C
2O42-  +  H2O  =  HC2O4-  + OH-         Kb1= 1.8 x 10-10
    HC
2O4-  +  H2O  =  H2C2O4  + OH-         Kb2= 1.8 x 10-13

6. ħÀüÀÔÀÚ¸¦ Å©°Ô ¸¸µå´Â ¹ýÀ» ¸ðµÎ ¿­°ÅÇÏ°í ÀÌÀ¯¸¦ ¹àÇô¶ó. ( 10Á¡ )

7. ´ÜÁö ferrous ammonium sulfate, FeSO4.(NH4)2SO4.6H2O ( F.W = 392.13 )¿Í ferrous chloride, FeCl2.6H2O ( F.W = 234.84 )¸¸À» Æ÷ÇÔÇÏ°í ÀÖ´Â °íüȥÇÕ¹°À» 0.6734g ÃëÇÏ¿´´Ù. ÀÌ ½Ã·á¸¦ 1M H2SO4¿¡ ³ìÀÌ°í H2O2¸¦ ÀÌ¿ëÇÏ¿© ¸ðµÎ Fe(¥±)¸¦  Fe(¥²)À¸·Î »êÈ­½ÃÅ°°í CupferronÀ¸·Î ħÀü½ÃŲ ÈÄ ferric cupferron complex¸¦ Å¿ö¼­ ferric oxide, Fe2O3 (F.W = 159.69)·Î¼­ 0.1864gÀ» ¾ò¾ú´Ù. ¿ø·¡ ½Ã·á¿¡¼­ÀÇ  Cl(A.W = 35.45)ÀÇ weight %¸¦ °è»êÇ϶ó. ( 15Á¡ )

8. Volhard titrationÀÇ ¿ø¸®¿¡ ´ëÇØ ½á¶ó. ( 5Á¡ )

9. 0.100M Ag+¿Í 0.100M Hg2+¸¦ Æ÷ÇÔÇÏ°í ÀÖ´Â 10mLÀÇ È¥ÇÕ¹°À» 0.100M KCNÀ¸·Î ÀûÁ¤ÇÏ¿© Hg2(CN)2¿Í  AgCNÀ¸·Î ħÀü½ÃÄ×´Ù. Ksp(AgCN)= 2.2 x 10-16, Ksp[Hg2(CN)2]= 5 x 10-40
   1) °¢°¢ ´ÙÀ½ ºÎÇÇÀÇ KCNÀ» ÷°¡ÇßÀ» ¶§ÀÇ [CN
-] ¸¦ °è»êÇ϶ó. ( 10Á¡ )
      15.00,  19.90,  20.00,  20.10,  25.00mL
   2) À§ÀÇ 19.90mL¿Í ´ç·®Á¡¿¡¼­ °¢°¢ AgCN ħÀüÀÌ »ý±â°Ú´Â°¡ ?  ÀÌÀ¯´Â ? ( 5Á¡ )

 

 

ºÐ¼®È­ÇÐ ¥°( 90Çг⵵ 1Çбâ 1Â÷½ÃÇè, 90.3.26 )

1. ´ÙÀ½ quantityÀÇ SI unit¸¦ ½á¶ó. ( 14Á¡ )
   1) mass   2) time   3) temperature   4) amount of substance   5) frequency
   6) pressure   7) energy

2. 53.4% NaOH ¼ö¿ë¾×À» 16.7mL ÃëÇÏ¿© 2.00L·Î ¹±ÇûÀ» ¶§ 0.169M NaOH°¡ ¸¸µé¾îÁ³´Ù¸é óÀ½ ¿ë¾×ÀÇ ¹Ðµµ´Â ¾ó¸¶À̰ڴ°¡ ? ( 11Á¡ )

3. ´ÙÀ½ °¢°¢À» °è»êÇÏ°í absolute uncertainty¿Í percent relative uncertaintyµµ ³ªÅ¸³»¾î¶ó. ( 10Á¡ )
   1) 83.2(¡¾1.0) x 32.3(¡¾0.2)/ 20.3(¡¾0.2) =
   2) [ 5.84(¡¾0.05) - 1.86(¡¾0.01) ]/ 22.3(¡¾0.2) =

4. Powdered mineral sampleÀÇ Ca contentÀ» 2°¡Áö ¹æ¹ýÀ¸·Î °¢°¢  5¹ø¾¿ ÃøÁ¤ÇÏ¿´´Ù. Æò±Õ°ªÀº 90% confidence level¿¡¼­ »ó´çÈ÷ ´Ù¸¦±î ?   ( 15Á¡ )
        -----------------------------------------------------------------
                                     Ca ( %Á¶¼º )
  -----------------------------------------------------------------
       ¹æ¹ý 1       0.0271    0.0282    0.0279    0.0271    0.0275
       ¹æ¹ý 2       0.0271    0.0268    0.0263    0.0274    0.0269
 -----------------------------------------------------------------

           Table.1 Value of t for various levels of probability

Degrees of Freedom

Factor for Confidence Interval

80%

90%

95%

99%

99.9%

1

3.08

6.31

12.7

63.7

637

2

1.89

2.92

4.30

9.92

31.6

3

1.64

2.35

3.18

5.84

12.9

4

1.53

2.13

2.78

4.60

8.60

5

1.48

2.02

2.57

4.03

6.86

6

1.44

1.94

2.45

3.71

5.96

7

1.42

1.90

2.36

3.50

5.40

8

1.40

1.86

2.31

3.36

5.04

9

1.38

1.83

2.26

3.25

4.78

10

1.37

1.81

2.23

3.17

4.59

11

1.36

1.80

2.20

3.11

4.44

12

1.36

1.78

2.18

3.06

4.32

13

1.35

1.77

2.16

3.01

4.22

14

1.34

1.76

2.14

2.98

4.14

¡Ä

1.29

1.64

1.96

2.58

3.29

  

5. ´Ü¹éÁúÀÇ ÇÔ·®À» ±¸Çϱâ À§ÇÏ¿© Èí±¤µµ¸¦ ÃøÁ¤ÇÏ¿© ¾òÀº calibration curve¸¦ ÀÌ¿ëÇÏ·Á°í ÇÑ´Ù.
   ----------------------------------------------------------------------
       ´Ü¹éÁú ( g)      0.00      9.36      18.72     28.08     37.44
         Èí±¤µµ         0.466     0.676     0.883     1.086     1.280
   ----------------------------------------------------------------------
1) method of least square¸¦ ÀÌ¿ëÇÏ¿© °¡Àå ÁÁÀº Á÷¼±½ÄÀ» ±¸Ç϶ó. ÀÌ ¶§ slope¿Í interceptÀÇ standard deviationµµ ±¸ÇÏ°í À¯È¿¼ýÀÚ °³³ä¿¡µµ À¯ÀÇÇ϶ó. ( 20Á¡ )
2) À§ÀÇ ½ÇÇè data¿Í 1)¿¡¼­ ±¸ÇÑ Á÷¼±½ÄÀÌ ³ªÅ¸³»¾îÁø graph¸¦ ±×·Á¶ó. ( 5Á¡ )
3) unknown protein sampleÀÇ Èí±¤µµ°¡ 0.973 À̾ú´Ù°í ÇÏ°í unknown¼Ó¿¡ µé¾îÀÖ´Â proteinÀÇ ÇÔ·®°ú uncertainty¸¦ ³ªÅ¸³»¾î¶ó. ( 10Á¡ )

6. Random compositionÀ» °®´Â bulk materialÀ» ºÐ¼®Çϴµ¥ À־ sampling standard deviationÀº 5% À̾ú´Ù.  mean ¿¡¼­ÀÇ error°¡ 4% À̳»°¡ µÇ´Âµ¥ 95% confidence¸¦ °®µµ·Ï ÇÏ·Á¸é ºÐ¼®ÇؾßÇÒ ½Ã·á´Â ¸î °³À̾î¾ß Çϴ°¡ ? ( 15Á¡ )

 

 

ºÐ¼®È­ÇÐ ¥° ( 89Çг⵵ 1Çбâ 4Â÷½ÃÇè, 89.?.? )

1. Gran's plot¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 15Á¡ )

2. Isoelectric focusing(µîÀü ÁýÁßÁ¡)¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 8Á¡ )

3. Chelate effect¿¡ ´ëÇØ ¿¹¸¦ µé¾î ¼³¸íÇ϶ó. ( 10Á¡ )

4. Iodometry(°£Á¢ ¿ä¿Àµå¹ýÀûÁ¤, ¿ä¿ÀµåÈ­¹ý)¿Í iodimetry(Á÷Á¢ ¿ä¿Àµå¹ýÀûÁ¤, ¿ä¿Àµå¹ý)¸¦ ºñ±³ ¼³¸íÇ϶ó. ( 10Á¡ )

5. 0.074M pyridine( C5H5N:, Kb= 1.69 x 10-9 ) 25.00mL¸¦ 0.096M HCl·Î ÀûÁ¤ÇÑ´Ù°í ÇÏÀÚ. HClÀ» ´ÙÀ½ ºÎÇǸ¸Å­ ÀûÁ¤ÇÏ¿´À» ¶§ÀÇ pH´Â ¾ó¸¶Àΰ¡ ?  ( 12Á¡ )
   ÀûÁ¤¹ÝÀÀÀº ´ÙÀ½°ú °°´Ù;      C
5H5N: +  H+  ¡æ   C5H5NH+
   a) 16.40mL      b) Ve         c) 20.24mL

6. 0.100M ÀÌ¿°±âÈ­ÇÕ¹°, B ( pKb1= 5.00, pKb2= 10.00 ) 100mL¸¦ 1.00M HCl·Î ÀûÁ¤ÇÑ´Ù°í ÇÏÀÚ.  Ã·°¡µÈ HClÀÇ ºÎÇÇ°¡ ´ÙÀ½°ú °°À» ¶§ pH¸¦ ±¸Ç϶ó. ( 15Á¡ )
   a) 4.0mL    b) 10.0mL    c) 16.0mL    d) 20.0mL    e) 23.0mL

7. 0.050M chloroacetic acid( ClCH2COOH, Ka= 1.36 x 10-3 ) 100.0mL¿¡ 0.060M methylamine      ( CH3NH2, Kb= 4.4 x 10-4 ) 60.0mL¸¦ ÷°¡ÇÑ´Ù¸é pH´Â ¾ó¸¶°¡ µÇ°Ú´Â°¡? ( 10Á¡ )

8. pH 5.5 ¿¡¼­ xylenol orange Áö½Ã¾àÀ» ÀÌ¿ëÇÏ°í Zn2+ Ç¥ÁØ¿ë¾×À» ÀÌ¿ëÇÏ¿© ¿ªÀûÁ¤À¸·Î 25.00mLÀÇ Ni2+¿ë¾×À» ºÐ¼®ÇÏ·Á°í ÇÑ´Ù. ÀÌ ¿ë¾×¿¡ 0.053M Na2EDTA 25.00mL¸¦ °¡ÇÑ ÈÄ 0.023M Zn2+Ç¥ÁØ¿ë¾×À¸·Î ¿ªÀûÁ¤ÇÏ¿´À» ¶§ 17.50mL°¡ µé¾î°£ ÈÄ Á¾¸»Á¡ÀÌ ³ªÅ¸³µ´Ù. Ni2+¿ë¾×ÀÇ ³óµµ´Â ¾ó¸¶Àΰ¡ ? ( 10Á¡ )

9. 1M HCl¿ë¾×¿¡¼­ ÀϾ´Â ´ÙÀ½ »êÈ­-ȯ¿ø¹ÝÀÀ¿¡ ´ëÇÑ ´ç·®Á¡¿¡¼­ÀÇ ÀüÀ§¸¦ °è»êÇ϶ó.( 15Á¡ )
   a) Ce
4+ + Fe2+ = Fe3+ + Ce3+   [ E¢ª(Fe3+/Fe2+) = 0.767V, E¢ª(Ce4+/Ce3+) = 1.70V ]
   b) IO
3- + 2Tl+ + 2Cl- + 6H+   =   ICl2- + 2Tl3+ + 3H2O
         [ E¢ª(IO3-/ICl2-) = 1.24V,   E¢ª(Tl
3+/Tl+) = 0.77V ]
   c) UO
22+ + Sn2+ + 4H+  =  U4+ +  Sn4+  + 2H2O
         [ E¢ª(UO
22+/U4+) = 0.334V,   E¢ª(Sn4+/Sn2+) = 0.139V ]

10. Jones reductor¿Í Walden reductor ¿¡ ´ëÇØ ºñ±³ ¼³¸íÇ϶ó. ( 8Á¡ )

11. ÂøÈ­¹ý ÀûÁ¤¿¡¼­ displacement titration°ú Indirect titration ¿¡ ´ëÇØ ¿¹¸¦ µé¾î ¼³¸íÇ϶ó. ( 10Á¡ )

12. Nonaqueous ¿ë¾×¿¡¼­ ÀûÁ¤Çؾ߸¸ ÇÏ´Â °æ¿ì¿¡´Â ¾î¶² °ÍÀÌ Àִ°¡ ? ( 7Á¡ )

 

 

ºÐ¼®È­ÇÐ ¥° ( 89Çг⵵ 1Çбâ 3Â÷½ÃÇè, 89.5.15 )

1. ´ÙÀ½ ¿ë¾îµé¿¡ ´ëÇØ °£´ÜÈ÷ ¼³¸íÇ϶ó.
   a) Electrical double layer ( 3Á¡ )    b) Coprecipitation ( 3Á¡ )
   c) Back titration ( 3Á¡ )             d) Buffer capacity ( 3Á¡ )
   e) Turbidimetry ( 4Á¡ )               f) Nephelometry ( 3Á¡ )

2. Gravimetric Analysis¸¦ ÇÒ·Á¸é ÀÔÀÚ°¡ Å« ħÀüÀ» ¾ò¾î¾ß ÇÑ´Ù. ÀÔÀÚ°¡ Å« ħÀüÀ» ¾òÀ» ¼ö ÀÖ´Â À̷аú ÀÌ¿Í °ü·ÃµÈ ¹æ¹ý¿¡ ´ëÇØ ½á¶ó. ( 20Á¡ )

3. Aluminum tetrafluoroborate, Al(BF4)3 (F.W = 287.39)¿Í Magnesium nitrate,Mg(NO3)2 (F.W = 148.31)¸¸À» Æ÷ÇÔÇÏ°í Àִ ȥÇÕ¹°ÀÇ ¹«°Ô°¡ 0.5656g À̾ú´Ù. ÀÌ°ÍÀ» 1% HF ¼ö¿ë¾×À¸·Î ³ìÀÎ ÈÄ °ú·®ÀÇ nitron (F.W = 312.37) ¿ë¾×À¸·Î ó¸®ÇÏ¿© nitron tetrafluoroborate (F.W = 400.18)°ú nitron nitrate (F.W = 375.39)ÀÇ È¥ÇÕ¹° ÇüÅÂÀÇ Ä§ÀüÀ¸·Î ¾òÀº ÈÄ ¹«°Ô¸¦ ´Þ¾Æº¸´Ï 2.644g À̾ú´Ù. ( nitron Àº tetrafluoroborate ¶Ç´Â nitrate ¿Í 1:1 ·Î ¹ÝÀÀÇÑ´Ù. )  Ã³À½ °íü È¥ÇÕ¹°¿¡ µé¾î ÀÖ´ø Mg (A.W = 24.312)ÀÇ ¹«°Ô%´Â ¾ó¸¶Àΰ¡ ? ( 15Á¡ )

4. 0.072M KI 25.00mL¸¦ 0.048M AgNO3·Î ÀûÁ¤ÇÑ °Í¿¡ ´ëÇØ ¾Ë¾Æº¸ÀÚ. ÷°¡µÈ AgNO3ÀÇ ºÎÇÇ°¡ ´ÙÀ½°ú °°À» ¶§ °¢°¢¿¡¼­ÀÇ [Ag+]¸¦ °è»êÇ϶ó. ( 10Á¡ )
   a) 36.8mL      b)  V
e      c) 38.1mL

5. Argentometric titration¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 20Á¡ )

6. pH°¡ 8.0ÀÎ buffer solutionÀ» ¸¸µé·Á°í ÇÑ´Ù. ¾î¶»°Ô Çϸé Àß ¸¸µé ¼ö ÀÖÀ»±î ? ( 15Á¡ )

7. HL2+ÀÎ À̾缺ÀÚ»êÀÇ Áß°£ÇüÅÂÀÎ HLÀÇ  pH°¡  (pK1 + pK2)/2 °¡ µÊÀ» º¸¿©¶ó. ( 15Á¡ )

8. Malonic acid, CH2(COOH)2 ¸¦ °£·«ÇÏ°Ô H2M À̶ó°í ¾²±â·Î ÇÏÀÚ. ´ÙÀ½ °¢ ¿ë¾×¿¡ µé¾î ÀÖ´Â [H2M], [HM-], [M2-] ÀÇ ³óµµ¿Í pH¸¦ ±¸Ç϶ó. ( 15Á¡ )
   a) 0.100M H
2M     b) 0.100M NaHM     c) 0.100M Na2M
   H
2M  =  H+ +  HM-        Ka1 = 1.42 x 10-3
   HM
-  =  H+ +  M2-        Ka2 = 2.01 x 10-10

 

 

ºÐ¼®È­ÇÐ ¥° ( 89Çг⵵ 1Çбâ 2Â÷½ÃÇè, 89.4.4 )

1. Explain the following terms. ( 20Á¡ )
   a) Gibbs free energy       b) Le Chatelier's principle
   c) Common ion effect       d) Formation constant

2. Which will be more soluble in water ?  Suggest the reason. ( 8Á¡ )
    TlIO
3 ( Ksp = 3.1 x 10-6 ),   Sr(IO3)2 ( Ksp = 3.3 x 10-7 )

3. As [Cl-] is increased in Ag+ aqueous solution, the amounts of AgCl is increased. However at high value of [Cl-], the amounts of AgCl is decreased. Why so ? ( 8Á¡ )

4. Explain why the solubility of salts is increased by the addition of ions to the solution. ( 8Á¡ )

5. How does the pH affect the solubility of CaF2 ?  Explain the reason. ( 8Á¡)

6. It is desired to perform complete separation of 0.02M Ca2+ and 0.02M Ce3+ by precipitation with oxalate ion ( C2O42-). Decide whether this is feasible ( 15Á¡ )
     CaC
2O4 ( Ksp= 1.3 x 10-8 ),  Ce2(C2O4)3 ( Ksp= 3.0 x 10-29 )

7. For a solution of Ni2+ and ethylenediamine(en), the following equilibrium constants apply at 20¡É.
               Ni
2+    +  en   =  Ni(en)2+        log K1 = 7.52
             Ni(en)
2+  +  en   =  Ni(en)22+       log K2 = 6.32
             Ni(en)
22+ +  en   =  Ni(en)32+       log K3 = 4.49
Calculate the concentration of free Ni
2+ in a solution prepared by mixing 0.200mole of en plus 1.0 mL of 0.0200M Ni2+ and diluting to 1.00 L.  ( 15Á¡ )

8. Suggest a reason why the hydrate radii decrease in the order;
   Sn
4+¡µ In3+¡µ Cd2+¡µ Rb+     ( 8Á¡ )

9. Consider the following simultaneous equilibria.
        Ag
3PO4(S)       =   3Ag+    +  PO43-    Ksp = 2.8 x 10-18
        PO
43-   +  H2O  =   HPO42-  +  OH-      Kb1 = 2.3 x 10-2
        HPO
42-  +  H2O  =   H2PO4-  +  OH-      Kb2 = 1.6 x 10-7
        H
2PO4-  +  H2O  =   H3PO4   +  OH-      Kb3 = 1.4 x 10-12
Calculate the molarity of Ag
+ in a saturated aqueous solution of Ag3PO4 at pH 5.00 ( 20Á¡ )

10. When ammonium sulfate dissolves, both the anion and cation have acid-base reactions in water.
         (NH
4)2SO4(S)  =   2NH4+    +  SO42-       Ksp = 276
         NH
4+          =   NH3(aq)  +  H+          Ka = 5.70 x 10-10
         SO
42- +  H2O  =   HSO4-    +  OH-         Kb = 9.80 x 10-13
    a) Write a charge balance for this system. ( 5Á¡ )
    b) Write a mass balance for this system. ( 5Á¡ )
    c) Find the concentration of NH
3(aq) if the pH fixed at 9.00  ( 10Á¡ )

 

 

ºÐ¼®È­ÇÐ ¥° ( 89Çг⵵ 1Çбâ 1Â÷½ÃÇè, 89.?.? )

1. ´ÙÀ½ ¹°¸®Àû ¾çÀÇ SI unit¸¦ ½á¶ó. ( 6Á¡ )
   ±æÀÌ,  Áú·®,  ½Ã°£,  ¿Âµµ,  ¾Ð·Â,  ¹°ÁúÀÇ ¾ç

2. ´ÙÀ½À» Á¤ÀÇÇ϶ó;  1 mole,  1 M,  1 F   ( 6Á¡ )

3. 48.0% HBr ( MW= 80.9g )¼ö¿ë¾×ÀÇ ¹Ðµµ´Â 1.50g/mL ÀÌ´Ù. ( 20Á¡ )
  a) ÀÌ ¿ë¾×ÀÇ formality´Â ¾ó¸¶Àΰ¡ ?
  b) 40.0gÀÇ HBrÀ» Æ÷ÇÔÇÏ°í ÀÖ´Â ¿ë¾×ÀÇ Áú·®Àº ¾ó¸¶Àΰ¡ ?
  c) 450 mmol ÀÇ HBrÀ» Æ÷ÇÔÇÏ°í ÀÖ´Â ¿ë¾×ÀÇ ºÎÇÇ´Â ¾ó¸¶Àΰ¡ ?
  d) 0.250M HBrÀ» 0.300L ¸¸µå´Âµ¥ ÀÌ ¿ë¾×Àº ¾ó¸¶³ª ÇÊ¿äÇÑ°¡ ?

4. ´ÙÀ½ ±â±¸µéÀº ¹«¾ùÀ» ÇÒ ¶§ »ç¿ëÇÏ´Â °ÍÀÎÁö °£´ÜÈ÷ ±â¼úÇ϶ó. ( 12Á¡ )
  a) buret   b) pipet   c) volumetric flask  d) aspirator  e) rubber policeman  f) desiccator

5. Àú¿ï·Î ½Ã·áÀÇ Áú·®À» ´Ù´Âµ¥ À־ ºÎ·Â¿¡ ÀÇÇÑ ¿ÀÂ÷¸¦ º¸Á¤ÇÏ´Â ÀÌÀ¯¿¡ ´ëÇØ ¼³¸íÇ϶ó. ( 5Á¡ )

6. ´ÙÀ½ ½ÄÀÇ °á°ú¿¡ ´ëÇØ  absolute uncertainty¿Í percent relative uncertainty±îÁö °è»êÇÏ¿© ¹àÇô¶ó. ƯÈ÷ À¯È¿¼ýÀÚ °³³ä¿¡ À¯ÀÇÇ϶ó. ( 10Á¡ )
              [ 4.97(¡¾0.05) - 1.86(¡¾0.01) ]/ 21.1(¡¾0.2)

7. 135.2, 142.3, 137.5, 139.3, 141.7¿¡ ´ëÇÑ Æò±Õ°ª, Ç¥ÁØÆíÂ÷, medianÀ» °è»êÇ϶ó.(6Á¡)

8. °¡¼Ö¸°¿¡ µé¾îÀִ ÷°¡Á¦ÀÇ % ¸¦ ¿©¼¸ ¹ø ÃøÁ¤ÇÑ °á°ú ´ÙÀ½ °ªÀ» ¾ò¾ú´Ù. ; 0.12,  0.17,0.14,  0.16,  0.20,  0.11% .   Ã·°¡Á¦ÀÇ %¿¡ ´ëÇÑ 90% ¿Í 99% confidence intervalÀ» ±¸Ç϶ó.  ( 10Á¡ )

           Table.1 Value of t for various levels of probability

Degrees of Freedom

Factor for Confidence Interval

80%

90%

95%

99%

99.9%

1

3.08

6.31

12.7

63.7

637

2

1.89

2.92

4.30

9.92

31.6

3

1.64

2.35

3.18

5.84

12.9

4

1.53

2.13

2.78

4.60

8.60

5

1.48

2.02

2.57

4.03

6.86

6

1.44

1.94

2.45

3.71

5.96

7

1.42

1.90

2.36

3.50

5.40

8

1.40

1.86

2.31

3.36

5.04

9

1.38

1.83

2.26

3.25

4.78

10

1.37

1.81

2.23

3.17

4.59

11

1.36

1.80

2.20

3.11

4.44

12

1.36

1.78

2.18

3.06

4.32

13

1.35

1.77

2.16

3.01

4.22

14

1.34

1.76

2.14

2.98

4.14

¡Ä

1.29

1.64

1.96

2.58

3.29

  

9. ´Ù¼¸°¡ÁöÀÇ ´Ù¸¥ ±¤¼®½Ã·á(°¢°¢ ´Ù¸¥ Ti ÇÔ·®À» °¡Áö°í ÀÖ´Ù.)ÀÇ Ti ÇÔ·®À» µÎ °¡Áö ¹æ¹ý¿¡ ÀÇÇØ ÃøÁ¤ÇÑ °á°ú´Â ´ÙÀ½°ú °°´Ù.
    ---------------------------------------------------
         ½Ã·á         A         B         C         D         E
    ---------------------------------------------------
        ¹æ¹ý 1      0.0134    0.0144    0.0126    0.0125    0.0137
        ¹æ¹ý 2      0.0135    0.0156    0.0137    0.0137    0.0136
   ----------------------------------------------------
   ÀÌ µÎ ºÐ¼®¹æ¹ýÀÌ 90% confidence level¿¡¼­ »ó´çÈ÷ ´Ù¸¥Áö¸¦ ¹àÇô¶ó. ( 15Á¡ )

10. ¾î¶² ½Ã·á ¼Ó¿¡ µé¾îÀÖ´Â proteinÀÇ ¾çÀ» Á¶»çÇÏ¿´´Âµ¥ ÀÌ proteinÀÇ ¾ç°ú absorbance(Èí±¤µµ)°¡ ºñ·Ê°ü°è¿¡ ÀÖÀ½À» ¾Ë¾Ò´Ù. µ¥ÀÌŸ´Â ´ÙÀ½°ú °°´Ù.
                  protein(¥ìg)             0.00      9.50      19.10     29.30     39.54
       absorbance(at 595nm)      0.468     0.678     0.887     1.110     1.333
    a) method of least square¸¦ ÀÌ¿ëÇÏ¿© °¡Àå ÁÁÀº Á÷¼±½ÄÀ» ±¸Ç϶ó. À¯È¿¼ýÀÚ¿¡ À¯ÀÇÇÏ°í                 y = [ m(¡¾¥ò 
x) ] x + [ b(¡¾¥òb) ] ÇüÅ·Π³ªÅ¸³»¾î¶ó. ( 25Á¡ )
    b) ½ÇÇè data¸¦ ÀÌ¿ëÇÏ¿© ±¸ÇÑ Á÷¼±½ÄÀ» ±×·¡ÇÁ·Î ±×·Á º¸¾Æ¶ó. ( 5Á¡ )
    c) unknown protein ½Ã·áÀÇ Èí±¤µµ°¡ 0.973 À̶ó¸é ÀÌ ½Ã·á¿¡ Æ÷ÇÔµÈ proteinÀÇ ¾ç°ú Ç¥ÁØÆíÂ÷·Î ³ªÅ¸³½ ºÒÈ®Á¤µµ´Â ¾ó¸¶Àΰ¡ ? ( 10Á¡ )
                                                                 
    m = |  ¥Òx
iyi  ¥Òxi |¡À   D           D = | ¥Ò(xi2)  ¥Òxi  |
           | ¥Òy
i      n   |                         | ¥Òxi        n   |
                             
    b = | ¥Ò(x
i2)  ¥Òxiyi  | ¡À  D         ¥òy ¡Ö  sy = [¥Ò(di-d)2/(degree of freedom)]1/2
          | ¥Ò x
i      ¥Òyi    |

     ¥òm2 = ¥òy2n/D         ¥òb2 = ¥òy2¥Ò(xi2)/D